浏览全部资源
扫码关注微信
1.苏州大学 功能纳米与软物质研究院, 江苏 苏州 215123
2.华东师范大学 物理与电子科学学院, 上海 200241
Published:05 January 2023,
Received:19 July 2022,
Revised:02 August 2022,
移动端阅览
王瀚洋,朱元烨,谢凤鸣等.紫外和近紫外有机电致发光二极管研究进展[J].发光学报,2023,44(01):140-162.
WANG Hanyang,ZHU Yuanye,XIE Fengming,et al.Recent Progress of Ultraviolet and Near-ultraviolet Organic Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(01):140-162.
王瀚洋,朱元烨,谢凤鸣等.紫外和近紫外有机电致发光二极管研究进展[J].发光学报,2023,44(01):140-162. DOI: 10.37188/CJL.20220276.
WANG Hanyang,ZHU Yuanye,XIE Fengming,et al.Recent Progress of Ultraviolet and Near-ultraviolet Organic Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(01):140-162. DOI: 10.37188/CJL.20220276.
紫外/近紫外(UV/NUV)有机电致发光二极管(OLEDs)因在生物、化学传感、激光、高密度信息存储和光电子电路等方面的巨大应用潜力,吸引了科研人员的广泛关注。本文综述了紫外/近紫外有机电致发光二极管(UV/NUV‑OLEDs),包括有机发色团、器件结构到实际应用的最新研究进展。首先,介绍了具有高效短波发射的紫外和近紫外发光材料,重点介绍了材料本身的特征及其结构特点;随后,总结了有利于提高设备性能的器件结构;最后,讨论了在新兴应用中使用UV/NUV‑OLEDs作为激发源的进展和挑战,期待为促进紫外光源在未来更多领域应用中的开发提供一定的借鉴。
Ultraviolet/near ultraviolet (UV/NUV) organic light-emitting diodes (OLEDs) have attracted extensive attention due to its great application potential in biological and chemical sensing, laser, high-density information storage and optoelectronic circuits,
etc
. This paper reviews the recent development of ultraviolet organic light-emitting diodes (UV-OLEDs), including organic chromophores, device structures and practical applications. Firstly, the materials with high efficiency shortwave emission are introduced, focusing on the characteristics of the materials themselves and their structural characteristics. Then, we give an overview of device structures to improve the performance of devices. Finally, we discuss the progress and challenges of using UV-OLEDs as excitation sources in emerging applications, and expect that this will promote the development of ultraviolet light sources in more fields in the future.
紫外光有机电致发光器件有机发光团器件结构激发源
ultraviolet lightorganic electroluminescent deviceorganic luminescence groupdevice structureexcitation source
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
BIAN J K, CHEN S, QIU L L, et al. Ambipolar self-host functionalization accelerates blue multi-resonance thermally activated delayed fluorescence with internal quantum efficiency of 100% [J]. Adv. Mater., 2022, 34(17): 2110547-1-9. doi: 10.1002/adma.202110547http://dx.doi.org/10.1002/adma.202110547
JIANG P C, MIAO J S, CAO X S, et al. Quenching-resistant multiresonance TADF emitter realizes 40% external quantum efficiency in narrowband electroluminescence at high doping level [J]. Adv. Mater., 2022, 34(3): 2106954-1-7. doi: 10.1002/adma.202106954http://dx.doi.org/10.1002/adma.202106954
BALTADOUROU M S, DELIBASIS K K, TSIGARIDAS G N, et al. LaUV: a physics-based UV light simulator for disinfection and communication applications [J]. IEEE Access, 2021, 9: 137543-137559. doi: 10.1109/access.2021.3118302http://dx.doi.org/10.1109/access.2021.3118302
FINE F, GERVAIS P. Efficiency of pulsed UV light for microbial decontamination of food powders [J]. J. Food Prot., 2004, 67(4): 787-792. doi: 10.4315/0362-028x-67.4.787http://dx.doi.org/10.4315/0362-028x-67.4.787
GÓMEZ-LÓPEZ V M, JUBINVILLE E, RODRÍGUEZ-LÓPEZ M I, et al. Inactivation of foodborne viruses by UV light: a review [J]. Foods, 2021, 10(12): 3141. doi: 10.3390/foods10123141http://dx.doi.org/10.3390/foods10123141
AUGSBURGER N, RACHMADI A T, ZAOURI N, et al. Recent update on UV disinfection to fulfill the disinfection credit value for enteric viruses in water [J]. Environ. Sci. Technol., 2021, 55(24): 16283-16298. doi: 10.1021/acs.est.1c03092http://dx.doi.org/10.1021/acs.est.1c03092
TALU G F, DIYAMANDOGLU V, JANS U. Oxalate ion decomposition under UV light from low pressure mercury vapor lamps [J]. Ozone: Sci. Eng., 2007, 29(6): 473-483. doi: 10.1080/01919510701615672http://dx.doi.org/10.1080/01919510701615672
CHEN J K, LIU H, GUO J J, et al. Robust luminescent molecules with high-level reverse intersystem crossing for efficient near ultraviolet organic light-emitting diodes [J]. Angew. Chem. Int. Ed., 2022, 61(10): e202116810-1-9. doi: 10.1002/anie.202116810http://dx.doi.org/10.1002/anie.202116810
SONG C Y, ZHANG N, LIN J, et al. Sb2O3/Ag/Sb2O3 multilayer transparent conducting films for ultraviolet organic light-emitting diode [J]. Sci. Rep., 2017, 7: 41250-1-7. doi: 10.1038/srep41250http://dx.doi.org/10.1038/srep41250
LIU H C, BAI Q, YAO L, et al. Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor-acceptor molecule [J]. Chem. Sci., 2015, 6(7): 3797-3804. doi: 10.1039/c5sc01131khttp://dx.doi.org/10.1039/c5sc01131k
ZHANG H, LI G G, GUO X M, et al. High-performance ultraviolet organic light-emitting diode enabled by high-lying reverse intersystem crossing [J]. Angew. Chem. Int. Ed., 2021, 60(41): 22241-22247. doi: 10.1002/anie.202108540http://dx.doi.org/10.1002/anie.202108540
NA J, BI S, JIANG C M, et al. Achieving the hypsochromic electroluminescence of ultraviolet OLED by tuning excitons relaxation [J]. Org. Electron., 2020, 82: 105718-1-6. doi: 10.1016/j.orgel.2020.105718http://dx.doi.org/10.1016/j.orgel.2020.105718
YUAN Y F, ZHANG X W, LI D L, et al. Tailoring hole injection of sol-gel processed WOx and its doping in PEDOT∶PSS for efficient ultraviolet organic light-emitting diodes [J]. Phys. Chem. Chem. Phys., 2020, 22(23): 13214-13222. doi: 10.1039/d0cp02006khttp://dx.doi.org/10.1039/d0cp02006k
BERGGREN M, GRANSTROIM M, INGANAS O, et al. Ultraviolet electroluminescence from an organic light emitting diode [J]. Adv. Mater., 1995, 7(11): 900-903. doi: 10.1002/adma.19950071105http://dx.doi.org/10.1002/adma.19950071105
YAO D L, WANG J X, LI D L, et al. Facilely solution-processed lithium carbonate for tailoring electron injection in high-performance inverted near-UV organic light-emitting diodes [J]. Phys. Status Solidi A, 2021, 218(17): 2100222-1-8. doi: 10.1002/pssa.202100222http://dx.doi.org/10.1002/pssa.202100222
ICHIKAWA M, KOBAYASHI K, KOYAMA T, et al. Intense and efficient ultraviolet electroluminescence from organic light-emitting devices with fluorinated copper phthalocyanine as hole injection layer [J]. Thin Solid Films, 2007, 515(7-8): 3932-3935. doi: 10.1016/j.tsf.2006.11.012http://dx.doi.org/10.1016/j.tsf.2006.11.012
MIKAMI A, MIZUNO Y, TAKEDA S. High efficiency ultraviolet light emitting organic devices and its application to white light source [J]. SID Int. Symp. Dig. Technol. Pap., 2008, 39(1): 215-218. doi: 10.1889/1.3069626http://dx.doi.org/10.1889/1.3069626
ZHENG Q H, YOU F J, XU J W, et al. Solution-processed aqueous composite hole injection layer of PEDOT∶PSS+MoOx for efficient ultraviolet organic light-emitting diode [J]. Org. Electron., 2017, 46: 7-13. doi: 10.1016/j.orgel.2017.03.037http://dx.doi.org/10.1016/j.orgel.2017.03.037
ZHANG X W, YOU F J, LIU S Q, et al. Exceeding 4% external quantum efficiency in ultraviolet organic light-emitting diode using PEDOT∶PSS/MoOx double-stacked hole injection layer [J]. Appl. Phys. Lett., 2017, 110(4): 043301-1-4. doi: 10.1063/1.4974822http://dx.doi.org/10.1063/1.4974822
YANG Y X, COHN P, EOM S H, et al. Ultraviolet-violet electroluminescence from highly fluorescent purines [J]. J. Mater. Chem. C, 2013, 1(16): 2867-2874. doi: 10.1039/c3tc00734khttp://dx.doi.org/10.1039/c3tc00734k
OUYANG X H, LI X L, ZHANG X Y, et al. Effective management of intramolecular charge transfer to obtain from blue to violet-blue OLEDs based on a couple of phenanthrene isomers [J]. Dyes Pigm., 2015, 122: 264-271. doi: 10.1016/j.dyepig.2015.06.036http://dx.doi.org/10.1016/j.dyepig.2015.06.036
ZHANG H Q, YANG B, ZHENG Y, et al. New biphenyl derivative with planar phenyl-phenyl conformation in crystal at room temperature exhibits highly efficient UV light-emitting [J]. J. Phys. Chem. B, 2004, 108(28): 9571-9573.
BURROWS P E, PADMAPERUMA A B, SAPOCHAK L S, et al. Ultraviolet electroluminescence and blue-green phosphorescence using an organic diphosphine oxide charge transporting layer [J]. Appl. Phys. Lett., 2006, 88(18): 183503-1-3. doi: 10.1063/1.2193429http://dx.doi.org/10.1063/1.2193429
YUAN C H, HOSHINO S, TOYODA S, et al. Room-temperature near-ultraviolet electroluminescence from a linear silicon chain [J]. Appl. Phys. Lett., 1997, 71(23): 3326-3328. doi: 10.1063/1.120326http://dx.doi.org/10.1063/1.120326
HOSHINO S, EBATA K, FURUKAWA K. Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure [J]. J. Appl. Phys., 2000, 87(4): 1968-1973. doi: 10.1063/1.372122http://dx.doi.org/10.1063/1.372122
SHARMA A, KATIYAR M, DEEPAK, et al. Room temperature ultraviolet emission at 357 nm from polysilane based organic light emitting diode [J]. Appl. Phys. Lett., 2006, 88(14): 143511-1-3. doi: 10.1063/1.2193652http://dx.doi.org/10.1063/1.2193652
SHARMA A, KATIYAR M, DEEPAK, et al. Polysilane based organic light emitting diodes: simultaneous ultraviolet and visible emission [J]. J. Appl. Phys., 2007, 102(8): 084506-1-7. doi: 10.1063/1.2800173http://dx.doi.org/10.1063/1.2800173
SINGH R, KATIYAR M. Polysilane based ultraviolet light-emitting diodes with improved turn-on voltage, stability and color purity [J]. Synth. Met., 2010, 160(17-18): 1892-1895. doi: 10.1016/j.synthmet.2010.07.005http://dx.doi.org/10.1016/j.synthmet.2010.07.005
YAN S Y, QIN M M, SHEN C M, et al. Efficient near ultraviolet organic light-emitting diode based on PVK material doped with BCPO molecules [J]. Synth. Met., 2020, 263: 116368-1-6. doi: 10.1016/j.synthmet.2020.116368http://dx.doi.org/10.1016/j.synthmet.2020.116368
LUO Y J, LI S B, ZHAO Y H, et al. An ultraviolet thermally activated delayed fluorescence OLED with total external quantum efficiency over 9% [J]. Adv. Mater., 2020, 32(32): 2001248-1-5. doi: 10.1002/adma.202001248http://dx.doi.org/10.1002/adma.202001248
LI G G, LI B X, ZHANG H, et al. Efficient ultraviolet organic light-emitting diodes with a CIEy of 0.04 and negligible-efficiency roll-off [J]. ACS Appl. Mater. Interfaces, 2022, 14(8): 10627-10636. doi: 10.1021/acsami.1c24285http://dx.doi.org/10.1021/acsami.1c24285
ZHONG Z T, ZHU X Y, WANG X H, et al. High steric-hindrance windmill-type molecules for efficient ultraviolet to pure-blue organic light-emitting diodes via hybridized local and charge-transfer excited-state [J]. Adv. Funct. Mater., 2022, 32(26): 2112969-1-10. doi: 10.1002/adfm.202112969http://dx.doi.org/10.1002/adfm.202112969
PENG L, LV J C, XIAO S, et al. High-performance non-doped near ultraviolet OLEDs with the EQE~6% and CIEy~0.03 from high-lying reverse intersystem crossing [J]. Chem. Eng. J., 2022, 450: 138339. doi: 10.1016/j.cej.2022.138339http://dx.doi.org/10.1016/j.cej.2022.138339
ETORI H, JIN X L, YASUDA T, et al. Spirobifluorene derivatives for ultraviolet organic light-emitting diodes [J]. Synth. Met., 2006, 156(16-17): 1090-1096. doi: 10.1016/j.synthmet.2006.07.003http://dx.doi.org/10.1016/j.synthmet.2006.07.003
LU P, ZHANG H Q, SHEN F Z, et al. A wide-bandgap semiconducting polymer for ultraviolet and blue light emitting diodes [J]. Macromol. Chem. Phys., 2003, 204(18): 2274-2280. doi: 10.1002/macp.200300006http://dx.doi.org/10.1002/macp.200300006
BAN X X, XU H G, YUAN G L, et al. Spirobifluorene/sulfone hybrid: highly efficient solution-processable material for UV-violet electrofluorescence, blue and green phosphorescent OLEDs [J]. Org. Electron., 2014, 15(7): 1678-1686. doi: 10.1016/j.orgel.2014.03.035http://dx.doi.org/10.1016/j.orgel.2014.03.035
YE C Q, ZHOU L W, FAN C B, et al. Aggregation-induced ultraviolet emission enhancement and the electroluminescence based on new phenanthrene derivatives [J]. ChemistrySelect, 2019, 4(7): 2044-2052. doi: 10.1002/slct.201803048http://dx.doi.org/10.1002/slct.201803048
CHEN M Y, LIAO Y J, LIN Y, et al. Progress on ultraviolet organic electroluminescence and lasing [J]. J. Mater. Chem. C, 2020, 8(42): 14665-14694. doi: 10.1039/d0tc03631ehttp://dx.doi.org/10.1039/d0tc03631e
ŁUKA G, VOLYNIUK D, TOMKEVICIENE A, et al. Carbazole derivative based near ultraviolet organic light emitting diode with ZnMgO∶Al anode layer [J]. Solid State Phenom., 2013, 200: 45-49. doi: 10.4028/www.scientific.net/ssp.200.45http://dx.doi.org/10.4028/www.scientific.net/ssp.200.45
XU K, LI D L, YUAN Y F, et al. Facilely solution-processed ZnO+Cs2CO3 for robust electron injection in ultraviolet organic light-emitting diode with inverted architecture [J]. Opt. Laser Technol., 2020, 131: 106419-1-7. doi: 10.1016/j.optlastec.2020.106419http://dx.doi.org/10.1016/j.optlastec.2020.106419
SCHNEIDER D, RABE T, RIEDL T, et al. An ultraviolet organic thin-film solid-state laser for biomarker applications [J]. Adv. Mater., 2005, 17(1): 31-34. doi: 10.1002/adma.200400570http://dx.doi.org/10.1002/adma.200400570
QIU C F, WANG L D, CHEN H Y, et al. Room-temperature ultraviolet emission from an organic light-emitting diode [J]. App. Phys. Lett., 2001, 79(14): 2276-2278. doi: 10.1063/1.1407300http://dx.doi.org/10.1063/1.1407300
OKUMOTO K, SHIROTA Y. Development of new hole-transporting amorphous molecular materials for organic electroluminescent devices and their charge-transport properties [J]. Mater. Sci. Eng. B, 2001, 85(2-3): 135-139. doi: 10.1016/s0921-5107(01)00546-3http://dx.doi.org/10.1016/s0921-5107(01)00546-3
LV Z Y, DENG Z B, XU D H, et al. Efficient organic light-emitting diodes with C60 buffer layer [J]. Displays, 2009, 30(1): 23-26. doi: 10.1016/j.displa.2008.10.001http://dx.doi.org/10.1016/j.displa.2008.10.001
ZHANG Q, ZHANG H, ZHANG X W, et al. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes [J]. Chin. Phys. B, 2015, 24(2): 024222-1-6. doi: 10.1088/1674-1056/24/2/024222http://dx.doi.org/10.1088/1674-1056/24/2/024222
LOU Y H, WANG Z K. Aqueous-solution-processable metal oxides for high-performance organic and perovskite solar cells [J]. Nanoscale, 2017, 9(36): 13506-13514. doi: 10.1039/c7nr04692hhttp://dx.doi.org/10.1039/c7nr04692h
XU K, TANG Z C, ZHANG Y, et al. The visible and ultraviolet organic light-emitting diodes with germanium dioxide as facile solution-processed anode buffer layer [J]. Curr. Appl. Phys., 2019, 19(10): 1076-1081. doi: 10.1016/j.cap.2019.06.006http://dx.doi.org/10.1016/j.cap.2019.06.006
ZHANG X W, MO B J, YOU F J, et al. Electroluminescence enhancement in ultraviolet organic light-emitting diode with graded hole-injection and -transporting structure [J]. Phys. Status Solidi RRL, 2015, 9(6): 353-357. doi: 10.1002/pssr.201510086http://dx.doi.org/10.1002/pssr.201510086
ZHANG X W, LI W S, LING Z T, et al. Facile synthesis of solution-processed MoS2 nanosheets and their application in high-performance ultraviolet organic light-emitting diodes [J]. J. Mater. Chem. C, 2019, 7(4): 926-936. doi: 10.1039/c8tc05370ghttp://dx.doi.org/10.1039/c8tc05370g
SO F, KONDAKOV D. Degradation mechanisms in small-molecule and polymer organic light-emitting diodes [J]. Adv. Mater., 2010, 22(34): 3762-3777. doi: 10.1002/adma.200902624http://dx.doi.org/10.1002/adma.200902624
HUH Y H, KWON O E, PARK B. Triple-stacked hole-selective layers for efficient solution-processable organic semiconducting devices [J]. Opt. Express, 2015, 23(11): A625-A639. doi: 10.1364/oe.23.00a625http://dx.doi.org/10.1364/oe.23.00a625
KANNO H, HOLMES R J, SUN Y, et al. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer [J]. Adv. Mater., 2006, 18(3): 339-342. doi: 10.1002/adma.200501915http://dx.doi.org/10.1002/adma.200501915
KRÖGER M, HAMWI S, MEYER J, et al. Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films [J]. Appl. Phys. Lett., 2009, 95(12): 123301-1-3. doi: 10.1063/1.3231928http://dx.doi.org/10.1063/1.3231928
NG A M C, DJURIŠIĆ A B, TAM K H, et al. 3, 4, 9, 10-Perylenetetracarboxylicdiimide as an interlayer for ultraviolet organic light emitting diodes [J]. Opt. Commun., 2008, 281(9): 2498-2503. doi: 10.1016/j.optcom.2007.12.089http://dx.doi.org/10.1016/j.optcom.2007.12.089
BECKER H, BURNS S E, FRIEND R H. Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers [J]. Phys. Rev. B, 1997, 56: 1893-1905. doi: 10.1103/physrevb.56.1893http://dx.doi.org/10.1103/physrevb.56.1893
YOU F J, MO B J, LIU L M, et al. Remarkable improvement in electroluminescence benefited from appropriate electron injection and transporting in ultraviolet organic light-emitting diode [J]. Opt. Laser Technol., 2016, 82: 199-202. doi: 10.1016/j.optlastec.2016.03.015http://dx.doi.org/10.1016/j.optlastec.2016.03.015
TANG X, DING L. Inverted and large flexible organic light-emitting diodes with low operating voltage [J]. J. Mater. Chem. C, 2015, 3(48): 12399-12402. doi: 10.1039/c5tc03108ghttp://dx.doi.org/10.1039/c5tc03108g
ZHANG X W, LIN H P, LI J, et al. A very simple method of constructing efficient inverted top-emitting organic light-emitting diode based on Ag/Al bilayer reflective cathode [J]. J. Lumin., 2012, 132(1): 1-5. doi: 10.1016/j.jlumin.2011.07.010http://dx.doi.org/10.1016/j.jlumin.2011.07.010
CHANG C H, HSU M K, WU S W, et al. Using lithium carbonate-based electron injection structures in high-performance inverted organic light-emitting diodes [J]. Phys. Chem. Chem. Phys., 2015, 17(19): 13123-13128. doi: 10.1039/c5cp01692dhttp://dx.doi.org/10.1039/c5cp01692d
颜康. 倒置结构OLED器件电子注入调控研究 [D]. 南京: 南京邮电大学, 2021.
YAN K. Regulation of Electron Injection for Inverted Organic Light Emitting Devices [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021. (in Chinese)
LIN J, GUO X Y, LV Y, et al. Highly efficient microcavity organic light-emitting devices with narrow-band pure UV emission [J]. ACS Appl. Mater. Interfaces, 2020, 12(9): 10717-10726. doi: 10.1021/acsami.9b20212http://dx.doi.org/10.1021/acsami.9b20212
MANNA E, FUNGURA F, BISWAS R, et al. Tunable near UV microcavity OLED arrays: characterization and analytical applications [J]. Adv. Funct. Mater., 2015, 25(8): 1226-1232. doi: 10.1002/adfm.201403313http://dx.doi.org/10.1002/adfm.201403313
CHEN S, XU H. Electroluminescent materials toward near ultraviolet region [J]. Chem. Soc. Rev., 2021, 50(15): 8639-8668. doi: 10.1039/d0cs01580fhttp://dx.doi.org/10.1039/d0cs01580f
王瀚洋(1997-),男,江苏南京人,硕士研究生,2021年于常州大学获得学士学位,主要从事有机光电材料和器件的研究。. doi: 10.1039/d0cs01580fhttp://dx.doi.org/10.1039/d0cs01580f
0
Views
527
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution