浏览全部资源
扫码关注微信
1.福州大学 物理与信息工程学院, 福建 福州 350108
2.中国福建光电信息科学与技术创新实验室, 福建 福州 350108
Published:05 December 2022,
Received:09 July 2022,
Revised:01 August 2022,
移动端阅览
李俊龙,李文豪,苏昊等.面向Micro⁃LED驱动与检测的单端注入电致发光机理[J].发光学报,2022,43(12):1991-2000.
LI Jun-long,LI Wen-hao,SU Hao,et al.Single-terminal Injection Electroluminescence Mechanism for Micro-LED Driving and Detection[J].Chinese Journal of Luminescence,2022,43(12):1991-2000.
李俊龙,李文豪,苏昊等.面向Micro⁃LED驱动与检测的单端注入电致发光机理[J].发光学报,2022,43(12):1991-2000. DOI: 10.37188/CJL.20220270.
LI Jun-long,LI Wen-hao,SU Hao,et al.Single-terminal Injection Electroluminescence Mechanism for Micro-LED Driving and Detection[J].Chinese Journal of Luminescence,2022,43(12):1991-2000. DOI: 10.37188/CJL.20220270.
Micro⁃LED具有高分辨率、高色域、高稳定性等优点,在近眼显示领域具有广阔的应用前景。然而,Micro⁃LED存在着巨量电致发光检测和巨量金属键合两大技术瓶颈。本文提出了一种单端载流子注入的Micro⁃LED工作模式,并制备了一种基于该工作模式的Micro⁃LED器件,即单注入型Micro⁃LED。通过实验和仿真研究单注入型Micro⁃LED的工作过程,探究其工作机理。研究了单注入型Micro⁃LED在正弦交流电下的电流⁃驱动电压关系、电流⁃驱动频率关系、亮度-驱动频率关系,以及能带的周期性变化规律,并提出单注入型Micro⁃LED的载流子输运模型。最后,展示了单注入模式在垂直结构Micro⁃LED检测领域的应用,为Micro⁃LED检测提供了新思路。
Micro light-emitting diode(Micro-LED), with many advantages such as high-resolution, high color gamut, and high stability, has broad prospects for near-eye display. However, two major technical issues in Micro-LED need to be solved, including mass electroluminescence detection and mass metal bonding. In this work, a working mode for Micro-LED with single-terminal carrier-injection is proposed, and a single-injection type Micro-LED related to the working mode is fabricated. The working process is studied by experiments and simulations in order to explore the working mechanisms. The current-voltage, current-frequency, brightness-frequency relationship and the periodic variation of the energy band of single-injection type Micro-LED under sinusoidal alternating current are studied. Moreover, the carrier transport model of single-injection Micro-LED is proposed. Finally, the application of single-injection mode used in the detection of vertical structure Micro-LED is demonstrated, which provides new ideas for Micro-LED detection.
Micro-LED单端载流子注入电致发光检测交流电
Micro-LEDsingle-terminal carrier-injectionelectroluminescence detectionalternating current
WU C X, WANG K, ZHANG Y A, et al. Emerging nanopixel light-emitting displays: significance, challenges, and prospects [J]. J. Phys. Chem. Lett., 2021, 12(14): 3522-3527. doi: 10.1021/acs.jpclett.1c00248http://dx.doi.org/10.1021/acs.jpclett.1c00248
TEMPLIER F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems [J]. J. Soc. Inf. Disp., 2016, 24(11): 669-675.
史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述 [J]. 中国光学, 2021, 14(5): 1146-1161. doi: 10.37188/CO.2021-0032http://dx.doi.org/10.37188/CO.2021-0032
SHI X G, XUE Z H, LI H H, et al. Review of augmented reality display technology [J]. Chin. Opt., 2021, 14(5): 1146-1161. (in Chinese). doi: 10.37188/CO.2021-0032http://dx.doi.org/10.37188/CO.2021-0032
郭俊达, 金伟其, 顿雄, 等. 基于OLED微显示器和变形目镜的全景显示技术 [J]. 中国光学, 2018, 11(4): 684-693. doi: 10.3788/CO.20181104.0684http://dx.doi.org/10.3788/CO.20181104.0684
GUO J D, JIN W Q, DUN X, et al. Panoramic display technology based on OLED micro-display and anamorphic eyepiece [J]. Chin. Opt., 2018, 11(4): 684-693. (in Chinese). doi: 10.3788/CO.20181104.0684http://dx.doi.org/10.3788/CO.20181104.0684
季渊, 王成其, 陈文栋, 等. OLED微显示器的原子扫描策略 [J]. 光学 精密工程, 2018, 26(4): 998-1005. doi: 10.3788/ope.20182604.0998http://dx.doi.org/10.3788/ope.20182604.0998
JI Y, WANG C Q, CHEN W D, et al. An atom scan strategy for OLED micro display [J]. Opt. Precision Eng., 2018, 26(4): 998-1005. (in Chinese). doi: 10.3788/ope.20182604.0998http://dx.doi.org/10.3788/ope.20182604.0998
HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light: Sci. Appl., 2020, 9(1): 105-1-16.
WU T Z, SHER C W, LIN Y, et al. Mini-LED and Micro-LED: promising candidates for the next generation display technology [J]. Appl. Sci., 2018, 8(9): 1557-1-17.
CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives [J]. Light: Sci. Appl., 2018, 7(3): 17168-1-13.
DAY J, LI J, LIE D Y C, et al. Ⅲ-nitride full-scale high-resolution microdisplays [J]. Appl. Phys. Lett., 2011, 99(3): 031116-1-3. doi: 10.1063/1.3615679http://dx.doi.org/10.1063/1.3615679
NAKAMURA S, KRAMES M R. History of gallium-nitride-based light-emitting diodes for illumination [J]. Proc. IEEE, 2013, 101(10): 2211-2220.
ZHU G Q, LIU Y J, MING R, et al. Mass transfer, detection and repair technologies in micro-LED displays [J]. Sci. China Mater., 2022, 65(8): 2128-2153.
潘祚坚, 陈志忠, 焦飞, 等. 面向显示应用的微米发光二极管外延和芯片关键技术综述 [J]. 物理学报, 2020, 69(19): 198501-1-24. doi: 10.7498/aps.69.20200742http://dx.doi.org/10.7498/aps.69.20200742
PAN Z J, CHEN Z Z, JIAO F, et al. A review of key technologies for epitaxy and chip process of micro light-emitting diodes in display application [J]. Acta Phys. Sinica, 2020, 69(19): 198501-1-24. (in Chinese). doi: 10.7498/aps.69.20200742http://dx.doi.org/10.7498/aps.69.20200742
SHIH F, TSOU C, FANG W. A monolithic micromachined thermocouple probe with electroplating nickel for Micro-LED inspection [J]. J. Microelectromech. Syst., 2021, 30(6): 864-875.
UM J G, JEONG D Y, JUNG Y, et al. Active-matrix GaN µ-LED display using oxide thin-film transistor backplane and flip chip LED bonding [J]. Adv. Electron. Mater., 2019, 5(3): 1800617-1-8.
SO H, SENESKY D G. Rapid fabrication and packaging of AlGaN/GaN high-temperature ultraviolet photodetectors using direct wire bonding [J]. J. Phys. D: Appl. Phys., 2016, 49(28): 285109-1-8. doi: 10.1088/0022-3727/49/28/285109http://dx.doi.org/10.1088/0022-3727/49/28/285109
SO H, SENESKY D G. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors [J]. Appl. Surf. Sci., 2016, 387: 280-284. doi: 10.1016/j.apsusc.2016.05.166http://dx.doi.org/10.1016/j.apsusc.2016.05.166
PARK J, SIN Y G, KIM J H, et al. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation [J]. Appl. Surf. Sci., 2016, 384: 353-359.
MISHKAT‐UL‐MASABIH S, LEONARD J, COHEN D, et al. Techniques to reduce thermal resistance in flip‐chip GaN‐based VCSELs [J]. Phys. Status Solidi A, 2017, 214(8): 1600819-1-5.
SUN J, FATIMA H, KOUDYMOV A, et al. Thermal management of AlGaN-GaN HFETs on sapphire using flip-chip bonding with epoxy underfill [J]. IEEE Electron Device Lett., 2003, 24(6): 375-377.
周自平, 黎垚, 严银菓, 等. Micro-LED应用于近眼显示的现状与趋势 [J]. 液晶与显示, 2022, 37(6): 661-679. doi: 10.37188/CJLCD.2022-0068http://dx.doi.org/10.37188/CJLCD.2022-0068
ZHOU Z P, LI Y, YAN Y G, et al. Current situation and trend of Micro-LED application in near-eye display [J]. Chin. J. Liq. Cryst. Disp., 2022, 37(6): 661-679. (in Chinese). doi: 10.37188/CJLCD.2022-0068http://dx.doi.org/10.37188/CJLCD.2022-0068
XU L L, XU J, ZHANG W, et al. High-stability reflective bonding pads for GaN-based flip-chip light-emitting diodes packaged by reflow soldering [J]. J. Phys. D: Appl. Phys., 2019, 52(26): 265102-1-7.
YANG L Q, YUAN F, ZHANG J H. Effects of ultrasonic bonding parameters on reliability of flip chip GaN-based light emitting diode [J]. J. Shanghai Univ. (Engl. Ed.), 2011, 15(4): 262-266.
CHO J, PARK J H, KIM J K, et al. White light-emitting diodes: history, progress, and future [J]. Laser Photonics Rev., 2017, 11(2): 1600147-1-17.
NAKAMURA S. Nobel lecture: background story of the invention of efficient blue InGaN light emitting diodes [J]. Rev. Mod. Phys., 2015, 87(4): 1139-1151.
FEEZELL D F, SPECK J S, DENBAARS S P, et al. Semipolar (20http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818474&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818471&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818467&type=3.174987793.17599487)InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting [J]. J. Disp. Technol., 2013, 9(4): 190-198.
WANG K, CHEN P Q, CHEN J J, et al. Alternating current electroluminescence from GaN-based nanorod light-emitting diodes [J]. Opt. Laser Technol., 2021, 140: 107044. doi: 10.1016/j.optlastec.2021.107044http://dx.doi.org/10.1016/j.optlastec.2021.107044
申奕伟, 李文豪, 郭家玮, 等. 交流型量子点发光器件: 现状、挑战与展望 [J]. 真空科学与技术学报, 2022, 42(5): 317-329.
SHEN Y W, LI W H, GUO J W, et al. AC-driven quantum dot light emitting devices: status, challenges and prospects [J]. Chin. J. Vac. Sci. Technol., 2022, 42(5): 317-329. (in Chinese)
WU C X, WANG K, GUO T L. Theoretical study of LED operating in noncarrier injection mode [J]. Nanomaterials, 2022, 12(15): 2532-1-10.
PAN C C, TANAKA S, WU F, et al. High-power, low-efficiency-droop semipolar (20http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818474&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818484&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818480&type=3.174987793.17599487) single-quantum-well blue light-emitting diodes [J]. Appl. Phys. Express, 2012, 5(6): 062103-1-3.
AHN B J, KIM T S, DONG Y Q, et al. Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes [J]. Appl. Phys. Lett., 2012, 100(3): 031905-1-4.
WANG K, LIU Y, WU C X, et al. Electroluminescence from μLED without external charge injection [J]. Sci. Rep., 2020, 10: 8059-1-8. doi: 10.1038/s41598-020-65092-zhttp://dx.doi.org/10.1038/s41598-020-65092-z
吴春晖, 朱石超, 付丙磊, 等. 载流子分布对GaN基LED频率特性的影响 [J]. 发光学报, 2017, 38(3): 347-352.
WU C H, ZHU S C, FU B L, et al. Influence of carrier distribution on the frequency behavior for GaN-based LEDs [J]. Chin. J. Lumin., 2017, 38(3): 347-352. (in Chinese)
杨悼波. GaN基微尺寸阵列LED芯片的制备 [D]. 广州: 华南理工大学, 2018.
YANG D B. Fabrication of GaN⁃based Micro⁃LED Arrays [D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
LI W H, WANG K, LI J L, et al. Working mechanisms of nanoscale light-emitting diodes operating in non-electrical contact and non-carrier injection mode: modeling and simulation [J]. Nanomaterials, 2022, 12(6): 912-1-14.
KOKUBO N, TSUNOOKA Y, FUJIE F, et al. Nondestructive visualization of threading dislocations in GaN by micro Raman mapping [J]. Jpn. J. Appl. Phys., 2019, 58(SC): SCCB06-1-5.
ZHENG L L, GUO Z Q, YAN W, et al. Research on a camera-based microscopic imaging system to inspect the surface luminance of the micro-LED array [J]. IEEE Access, 2018, 6: 51329-51336.
ZHANG K, PENG D, LAU K M, et al. Fully-integrated active matrix programmable UV and blue micro-LED display system-on-panel (SoP) [J]. J. Soc. Inf. Disp., 2017, 25(4): 240-248.
YAMAMOTO H, AGUI K, UCHIDA Y, et al. Evaluation of carrier concentration reduction in GaN-on-GaN wafers by Raman spectroscopy and Kelvin force microscopy [J]. Jpn. J. Appl. Phys., 2017, 56(8S1): 08LB07-1-5.
BAGNALL K R, MOORE E A, BADESCU S C, et al. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy [J]. Rev. Sci. Instrum., 2017, 88(11): 113111-1-3.
CHO N H, JUNG U, KIM S, et al. Non-destructive inspection methods for LEDs using real-time displaying optical coherence tomography [J]. Sensors, 2012, 12(8): 10395-10406.
SHI S C, BAI W H, LIN C J, et al. Uniformity and stability of quantum dot pixels evaluated by microscale fluorescence spectroscopy [J]. Laser Photonics Rev., 2022, 16(8): 2100699-1-8.
0
Views
651
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution