浏览全部资源
扫码关注微信
1.华北电力大学 数理系, 河北 保定 071003
2.石家庄铁道大学 材料科学与工程学院, 河北 石家庄 050043
3.河北大学 物理科学与技术学院, 河北 保定 071002
4.河北省光学感知技术创新中心, 河北 保定 071002
Published:05 December 2022,
Received:11 July 2022,
Revised:26 July 2022,
移动端阅览
张贵银,武晓蕊,王烨等.CsFAMA混合阳离子钙钛矿的带尾态发光和热无序度分析[J].发光学报,2022,43(12):1938-1947.
ZHANG Gui-yin,WU Xiao-rui,WANG Ye,et al.Luminescence with Band-tail States and Thermal Disorder Analysis of CsFAMA Mixed Cationic Perovskite[J].Chinese Journal of Luminescence,2022,43(12):1938-1947.
张贵银,武晓蕊,王烨等.CsFAMA混合阳离子钙钛矿的带尾态发光和热无序度分析[J].发光学报,2022,43(12):1938-1947. DOI: 10.37188/CJL.20220268.
ZHANG Gui-yin,WU Xiao-rui,WANG Ye,et al.Luminescence with Band-tail States and Thermal Disorder Analysis of CsFAMA Mixed Cationic Perovskite[J].Chinese Journal of Luminescence,2022,43(12):1938-1947. DOI: 10.37188/CJL.20220268.
利用稳态和瞬态光致发光光谱技术对Cs
0.05
FA
0.81
MA
0.14
PbI
2.55
Br
0.45
(以下简称CsFAMA混合阳离子钙钛矿)薄膜的发光过程进行研究。在245 K附近观测到相变引起的CsFAMA混合阳离子钙钛矿发光光谱红移现象。根据Saha‐Langmuir方程计算结果,确认温度高于65 K时电子空穴复合主导CsFAMA混合阳离子钙钛矿发光过程。利用带间发光与带尾态发光组合模型拟合CsFAMA混合阳离子钙钛矿的发光光谱,得到65~295 K温度范围内的带尾态扩展程度
E
0
(0.023~0.045 eV)与载流子等效温度。根据CsFAMA混合阳离子钙钛矿的发光动力学曲线分析,确定电子空穴复合速率常数
R
eh
随热力学温度升高(65~295 K)而不断降低。本文实验结果表明,热力学温度升高引起的晶格振动加剧,有利于实现自由载流子与晶格间的热交换,但增加了体系的热无序度,抑制了电子空穴的辐射复合,加快了载流子的非辐射复合速率。
In this paper, the luminescence process of Cs
0.05
FA
0.81
MA
0.14
PbI
2.55
Br
0.45
(hereinafter referred to as CsFAMA mixed cationic perovskite) thin film was studied by steady-state and transient photoluminescence(PL) spectroscopy. The phase transition induced PL spectra red shift was observed at about 245 K. According to the results of Saha-Langmuir equation, it is confirmed that electron hole recombination dominates the luminescence process of CsFAMA mixed cation perovskite when the temperature is higher than 65 K. The PL spectra of CsFAMA mixed cation perovskite were fitted by the combined model of interband luminescence and band tail luminescence. The band tail extendsion
E
0
(0.023-0.045 eV) and the carrier equivalent temperature were obtained in the temperature range of 65-295 K. The experimental results show that the electron hole recombination rate constant
R
eh
decreases with the increase of thermodynamic temperature(65-295 K) on the basis of analysis of the luminescence kinetics curve of CsFAMA mixed cationic perovskite. The increase of thermodynamic temperature causes the enhancement of lattice vibration, which is conducive to the heat exchange between free carriers and lattice. Meanwhile it increases the thermal disorder, leading to suppress of electron and hole radiative recombination and accelerate of carrier nonradiative recombination.
发光带尾态热无序相变
luminescenceband-tail statethermal disorderphase transition
ZUO C T, BOLINK H J, HAN H W, et al. Advances in perovskite solar cells [J]. Adv. Sci., 2016, 3(7): 1500324-1-16.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
ZHANG Q, LI G Y, LIU X F, et al. A room temperature low-threshold ultraviolet plasmonic nanolaser [J]. Nat. Commun., 2014, 5: 4953-1-9.
DE GIORGI M L, PERULLI A, YANTARA N, et al. Amplified spontaneous emission properties of solution processed CsPbBr3 perovskite thin films [J]. J. Phys. Chem. C, 2017, 121(27): 14772-14778.
SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells [J]. Sci. Adv., 2017, 3(10): eaao4204-1-8.
ZHANG X Y, LIN H, HUANG H, et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer [J]. Nano Lett., 2016, 16(2): 1415-1420.
YANTARA N, BHAUMIK S, YAN F, et al. Inorganic halide perovskites for efficient light-emitting diodes [J]. J. Phys. Chem. Lett., 2015, 6(21): 4360-4364.
EATON S W, LAI M L, GIBSON N A, et al. Lasing in robust cesium lead halide perovskite nanowires [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(8): 1993-1998.
LI Z Z, LIU X L, XU J, et al. Moisture-induced crystallinity improvement for efficient CsPbI3-xBrx perovskite solar cells with excess cesium bromide [J]. J. Phys. Chem. Lett., 2019, 10(16): 4587-4595.
MCMEEKIN D P, SADOUGHI G, REHMAN W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells [J]. Science, 2016, 351(6269): 151-155. doi: 10.1126/science.aad5845http://dx.doi.org/10.1126/science.aad5845
REHMAN W, MCMEEKIN D P, PATEL J B, et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties [J]. Energy Environ. Sci., 2017, 10(1): 361-369.
HU Y H, HUTTER E M, RIEDER P, et al. Understanding the role of cesium and rubidium additives in perovskite solar cells: trap states, charge transport, and recombination [J]. Adv. Energy Mater., 2018, 8(16): 1703057-1-11.
RUF F, AYGÜLER M F, GIESBRECHT N, et al. Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs, FA, MA)Pb(I, Br)3 perovskites [J]. APL Mater., 2019, 73(3): 031113-1-9.
SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency [J]. Energy Environ. Sci., 2016, 9(6): 1989-1997.
CHEN L, TAN Y Y, CHEN Z X, et al. Toward long-term stability: single-crystal alloys of cesium-containing mixed cation and mixed halide perovskite [J]. J. Am. Chem. Soc., 2019, 141(4): 1665-1671.
AZULAY D, LEVINE I, GUPTA S, et al. On the influence of multiple cations on the in-gap states and phototransport properties of iodide-based halide perovskites [J]. Phys. Chem. Chem. Phys., 2018, 20(37): 24444-24452.
GHOSH D, SMITH A R, WALKER A B, et al. Mixed A-cation perovskites for solar cells: atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties [J]. Chem. Mater., 2018, 30(15): 5194-5204.
ELSHANAWANY M M, RICCIARDULLI A G, JERONIMO-RENDON J J, et al. Ultrafast carrier dynamics in wide band gap mixed-cation perovskites: influence of the Cs cation [J]. J. Phys. Chem. C, 2022, 126(20): 8787-8793.
MADJET M E A, AKIMOV A V, EL-MELLOUHI F, et al. Enhancing the carrier thermalization time in organometallic perovskites by halide mixing [J]. Phys. Chem. Chem. Phys., 2016, 18(7): 5219-5231.
SCHICK K, DAUB E, FINKBEINER S, et al. Verification of a generalized Planck law for luminescence radiation from silicon solar cells [J]. Appl. Phys. A, 1992, 54(2): 109-114.
WANG S X, DONG X Q, XIONG Y X, et al. CsFAMAPbIBr photoelectric memristor based on ion‐migration induced memristive behavior [J]. Adv. Electron. Mater., 2021, 7(5): 2100014.
ZHENG X P, HOU Y, BAO C X, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells [J]. Nat. Energy, 2020, 5(2): 131-140.
CHEN C, HU X M, LU W G, et al. Elucidating the phase transitions and temperature-dependent photoluminescence of MAPbBr3 single crystal [J]. J. Phys. D: Appl. Phys., 2018, 51(4): 045105-1-8.
GREENLAND C, SHNIER A, RAJENDRAN S K, et al. Correlating phase behavior with photophysical properties in mixed‐cation mixed‐halide perovskite thin films [J]. Adv. Energy Mater., 2020, 10(4): 1901350-1-11.
PARK S, SEO Y S, AHN C W, et al. Temperature-dependent optical properties of hybrid organic⁃inorganic perovskite single crystals (CH3NH3PbI3 and CH3NH3PbBr3) [J]. J. Phys. D: Appl. Phys., 2019, 52(33): 335302-1-10.
ZHENG H G, DAI J. Temperature-dependent photoluminescence properties of [HC(NH2)2]PbI3 perovskite nanorods [J]. Mater. Lett., 2017, 188: 232-234.
YE T, PETROVIĆ M, PENG S J, et al. Enhanced charge carrier transport and device performance through dual-cesium doping in mixed-cation perovskite solar cells with near unity free carrier ratios [J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 2358-2368.
D'INNOCENZO V, GRANCINI G, ALCOCER M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites [J]. Nat. Commun., 2014, 5: 3586-1-6.
YE T, JIANG X, WAN D Y, et al. Ultrafast photogenerated hole extraction/transport behavior in a CH3NH3PbI3/carbon nanocomposite and its application in a metal-electrode-free solar cell [J]. ChemPhysChem, 2016, 17(24): 4102-4109.
ONISHI Y, REN Z, SEGAWA K, et al. Ultrafast carrier relaxation through Auger recombination in the topological insulator Bi1.5Sb0.5Te1.7Se1.3 [J]. Phys. Rev. B, 2015, 91(8): 085306-1-12.
LEDINSKY M, SCHÖNFELDOVÁ T, HOLOVSKÝ J, et al. Temperature dependence of the Urbach energy in lead iodide perovskites [J]. J. Phys. Chem. Lett., 2019, 10(6): 1368-1373.
ESMAIELPOUR H, WHITESIDE V R, HIRST L C, et al. Effect of occupation of the excited states and phonon broadening on the determination of the hot carrier temperature from continuous wave photoluminescence in InGaAsP quantum well absorbers [J]. Prog. Photovoltaics, 2017, 25(9): 782-790.
LIAO B L, QIU B, ZHOU J W, et al. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study [J]. Phys. Rev. Lett., 2015, 114(11): 115901-1-6.
MILOT R L, EPERON G E, SNAITH H J, et al. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films [J]. Adv. Funct. Mater., 2015, 25(39): 6218-6227.
TRIMPL M J, WRIGHT A D, SCHUTT K, et al. Charge‐carrier trapping and radiative recombination in metal halide perovskite semiconductors [J]. Adv. Funct. Mater., 2020, 30(42): 2004312-1-12.
NIPPERT F, KARPOV S Y, CALLSEN G, et al. Temperature-dependent recombination coefficients in InGaN light-emitting diodes: hole localization, Auger processes, and the green gap [J]. Appl. Phys. Lett., 2016, 109(16): 161103-1-5.
OLSON B V, KADLEC E A, KIM J K, et al. Intensity- and temperature-dependent carrier recombination in InAs/InAs1-xSbx type-Ⅱ superlattices [J]. Phys. Rev. Appl., 2015, 3(4): 044010.
ALLEGRO I, LI Y, RICHARDS B S, et al. Bimolecular and Auger recombination in phase-stable perovskite thin films from cryogenic to room temperature and their effect on the amplified spontaneous emission threshold [J]. J. Phys. Chem. Lett., 2021, 12(9): 2293-2298. doi: 10.1021/acs.jpclett.1c00099http://dx.doi.org/10.1021/acs.jpclett.1c00099
ZHU X Y, PODZOROV V. Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons [J]. J. Phys. Chem. Lett., 2015, 6(23): 4758-4761.
ZHENG F, TAN L Z, LIU S, et al. Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3 [J]. Nano Lett., 2015, 15(12): 7794-7800.
WANG Y T, LONG R. Anomalous temperature-dependent charge recombination in CH3NH3PbI3 perovskite: key roles of charge localization and thermal effect [J]. ACS Appl. Mater. Interfaces, 2019, 11(35): 32069-32075.
张贵银(1965- ),女,河北安平人,博士,教授,2005年于河北大学获得博士学位,主要从事光与物质的相互作用方面的研究。
E⁃mail: gyzhang65@aliyun.com
党伟(1981- ),男,河北唐山人,博士,副教授,2014年于中国科学院物理研究所获得博士学位,主要从事半导体材料载流子复合动力学过程的研究。
E⁃mail: dangwei@hbu.edu.cn
0
Views
557
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution