浏览全部资源
扫码关注微信
1.中国科学院上海光学精密机械研究所 中国科学院强激光材料重点实验室, 上海 201800
2.中国科学院大学, 北京 100049
Published:05 November 2022,
Received:26 July 2022,
Revised:22 August 2022,
移动端阅览
陈跃,姜本学,冯涛等.重频纳秒大能量激光增益介质初探[J].发光学报,2022,43(11):1789-1807.
CHEN Yue,JIANG Ben-xue,FENG Tao,et al.Repetition Rate Nanosecond Large Energy Pulse Laser Gain-media[J].Chinese Journal of Luminescence,2022,43(11):1789-1807.
陈跃,姜本学,冯涛等.重频纳秒大能量激光增益介质初探[J].发光学报,2022,43(11):1789-1807. DOI: 10.37188/CJL.20220264.
CHEN Yue,JIANG Ben-xue,FENG Tao,et al.Repetition Rate Nanosecond Large Energy Pulse Laser Gain-media[J].Chinese Journal of Luminescence,2022,43(11):1789-1807. DOI: 10.37188/CJL.20220264.
重频纳秒大能量激光器在科研探究、工业制造、军事防务等领域发挥着重要作用,本文详细介绍了Yb
3+
或 Nd
3+
稀土离子掺杂的激光晶体、激光玻璃和激光陶瓷的研究进展以及相应的重频纳秒大能量激光器代表性成果,分析了激光增益介质发射截面、热导率、上能级寿命等参数特性对激光系统的影响。针对重频纳秒大能量激光器增益介质的选择制备、热管理、自发辐射放大效应管控展开讨论并梳理解决对策,对其未来的发展前景进行了展望。
The repetitive nanosecond high energy laser plays an important role in scientific inquiry, industrial manufacturing, military defense and other fields. In this paper, the research progress of Yb
3+
or Nd
3+
rare-earth ion doped laser crystals, laser glasses and laser ceramics, as well as the representative results of the corresponding repetitive nanosecond high energy lasers, are introduced in detail. The influence of the laser gain medium emission cross section, thermal conductivity, upper level life and other parameters on the laser system is analyzed. We discussed the selective preparation, thermal management and control of spontaneous emission amplification effect of gain medium for repetitive nanosecond high energy lasers, and sorted out the solutions. Finally, the prospect of its future development is discussed.
重频脉冲激光器大能量激光器Yb3+Nd3+增益介质
heavy frequency pulse laserlarge energy laserYb3+, Nd3+, gain medium
LUO W, XU W, PAN Q Y, et al. X-ray generation from slanting laser-Compton scattering for future energy-tunable Shanghai Laser Electron Gamma Source [J]. Appl. Phys. B, 2010, 101(4): 761-771. doi: 10.1007/s00340-010-4100-0http://dx.doi.org/10.1007/s00340-010-4100-0
ZHANG Q R. Possible generation of a γ-ray laser by electrons wiggling in a background laser [J]. Chin. Phys. B, 2015, 24(5): 054208-1-9. doi: 10.1088/1674-1056/24/5/054208http://dx.doi.org/10.1088/1674-1056/24/5/054208
AGUSTSSON R, BOUCHER S, FINN O, et al. Laser-free RF-Gun as a combined source of Thz and Ps-Sub-Ps X-rays [J]. Phys. Procedia, 2015, 66: 156-165. doi: 10.1016/j.phpro.2015.05.021http://dx.doi.org/10.1016/j.phpro.2015.05.021
BRENNER C M, MIRFAYZI S R, RUSBY D R, et al. Laser-driven X-ray and neutron source development for industrial applications of plasma accelerators [J]. Plasma Phys. Control. Fusion, 2016, 58(1): 014039-1-9. doi: 10.1088/0741-3335/58/1/014039http://dx.doi.org/10.1088/0741-3335/58/1/014039
BAYRAMIAN A J, BOPP R, BORDEN M, et al. High energy, high average power, DPSSL system for next generation petawatt laser systems [C]. 2016 Conference on Lasers and Electro‐Optics, San Jose, 2016. doi: 10.1364/cleo_si.2016.stu3m.2http://dx.doi.org/10.1364/cleo_si.2016.stu3m.2
WANG L, XING T L, HU S W, et al. Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7% [J]. Opt. Express, 2017, 25(4): 3373-3380. doi: 10.1364/oe.25.003373http://dx.doi.org/10.1364/oe.25.003373
YUAN X D, WANG J S, CHEN Y Q, et al. Laser at 532 nm by intracavity frequency-doubling in BBO [J]. J. Semicond., 2017, 38(6): 064007-1-4. doi: 10.1088/1674-4926/38/6/064007http://dx.doi.org/10.1088/1674-4926/38/6/064007
苏艳丽. LD泵浦全固态213 nm深紫外激光器的研究 [D]. 济南: 山东师范大学, 2006.
SU Y L. Study of Diode⁃pumped All⁃solid⁃state Deep Ultraviolet Laser at 213 nm [D]. Ji’nan: Shandong Normal University, 2006. (in Chinese)
SEE D W, DULANEY J L, CLAUER A H, et al. The air force manufacturing technology laser peening initiative [J]. Surf. Eng., 2002, 18(1): 32-36. doi: 10.1179/026708401225001264http://dx.doi.org/10.1179/026708401225001264
GALLAIS L, DOUTI D B, COMMANDRÉ M, et al. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials [J]. J. Appl. Phys., 2015, 117(22): 223103-1-14. doi: 10.1063/1.4922353http://dx.doi.org/10.1063/1.4922353
付星, 刘廷昊, 雷新星, 等. 二极管泵浦重复频率纳秒高能固体激光器研究进展 [J]. 中国激光, 2021, 48(15): 1501003-1-21. doi: 10.3788/cjl202148.1501003http://dx.doi.org/10.3788/cjl202148.1501003
FU X, LIU T H, LEI X X, et al. High energy diode-pumped rep-rated nanosecond solid-state laser [J]. Chin. J. Lasers, 2021, 48(15): 1501003-1-21. (in Chinese). doi: 10.3788/cjl202148.1501003http://dx.doi.org/10.3788/cjl202148.1501003
BAYRAMIAN A, ARMSTRONG P, AULT E, et al. The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development [J]. Fusion Sci. Technol., 2007, 52(3): 383-387. doi: 10.13182/fst07-a1517http://dx.doi.org/10.13182/fst07-a1517
BAYRAMIAN A, BOPP R, DERI B, et al. High-energy diode-pumped solid-state laser (DPSSL) for high-repetition-rate petawatt laser systems [C]. High Intensity Lasers and High Field Phenomena 2016, Long Beach, 2016. doi: 10.1364/hilas.2016.ht1b.5http://dx.doi.org/10.1364/hilas.2016.ht1b.5
DIVOKY M, TOKITA S, HWANG S, et al. 1-J operation of monolithic composite ceramics with Yb∶YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation [J]. Opt. Lett., 2015, 40(6): 855-858. doi: 10.1364/ol.40.000855http://dx.doi.org/10.1364/ol.40.000855
YASUHARA R, KAWASHIMA T, SEKINE T, et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd∶glass zigzag slab laser with a stimulated Brillouin scattering mirror [J]. Opt. Lett., 2008, 33(15): 1711-1713.
SEKINE T, TAKEUCHI Y, KURITA T, et al. Development of cryogenic Yb∶YAG ceramics amplifier for over 100 J DPSSL [C]. Proceedings of SPIE 10082, Solid State Lasers ⅩⅩⅥ: Technology and Devices, San Francisco, 2017. doi: 10.1117/12.2254027http://dx.doi.org/10.1117/12.2254027
GONÇALVÈS-NOVO T, ALBACH D, VINCENT B, et al. 14 J/2 Hz Yb3+∶YAG diode pumped solid state laser chain [J]. Opt. Express, 2013, 21(1): 855-866. doi: 10.1364/oe.21.000855http://dx.doi.org/10.1364/oe.21.000855
MARRAZZO S, GONÇALVÈS-NOVO T, MILLET F, et al. Low temperature diode pumped active mirror Yb3+∶YAG disk laser amplifier studies [J]. Opt. Express, 2016, 24(12): 12651-12660. doi: 10.1364/oe.24.012651http://dx.doi.org/10.1364/oe.24.012651
FALCOZ F, GONTIER E, COURJAUD A, et al. Latest developments at Amplitude in the frame of the ELI-HU projects. PW laser at high repetition rate [C]. CLEO: Science and Innovations 2019, San Jose, 2019. doi: 10.1364/cleo_si.2019.stu4e.1http://dx.doi.org/10.1364/cleo_si.2019.stu4e.1
BANERJEE S, ERTEL K, MASON P D, et al. High-efficiency 10 J diode pumped cryogenic gas cooled Yb∶YAG multislab amplifier [J]. Opt. Lett., 2012, 37(12): 2175-2177. doi: 10.1364/ol.37.002175http://dx.doi.org/10.1364/ol.37.002175
BANERJEE S, ERTEL K, MASON P, et al. DiPOLE: a multi-slab cryogenic diode pumped Yb∶YAG amplifier [C]. Proceedings of SPIE 8780, High⁃Power, High⁃Energy, and High⁃Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt⁃Class Lasers, Prague, 2013: 878006-1-7. doi: 10.1117/12.2016611http://dx.doi.org/10.1117/12.2016611
MASON P, DIVOKÝ M, ERTEL K, et al. Kilowatt average power 100 J-level diode pumped solid state laser [J]. Optica, 2017, 4(4): 438-439. doi: 10.1364/optica.4.000438http://dx.doi.org/10.1364/optica.4.000438
MASON P, BANERJEE S, SMITH J, et al. Development of a 100 J, 10 Hz laser for compression experiments at the high energy density instrument at the European XFEL [J]. High Power Laser Sci. Eng., 2018, 6: e65-1-10. doi: 10.1017/hpl.2018.56http://dx.doi.org/10.1017/hpl.2018.56
MASON P, BANERJEE S, SMITH J, et al. Efficient operation of a high energy Yb∶YAG DPSSL amplifier [C]. The European Conference on Lasers and Electro⁃Optics 2019, Munich, 2019. doi: 10.1109/cleoe-eqec.2019.8871657http://dx.doi.org/10.1109/cleoe-eqec.2019.8871657
BANERJEE S, MASON P, PHILLIPS J, et al. Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications [J]. High Power Laser Sci. Eng., 2020, 8: e20-1-3. doi: 10.1017/hpl.2020.20http://dx.doi.org/10.1017/hpl.2020.20
FU X, LIU Q, LI P L, et al. High-efficiency 2 J, 20 Hz diode-pumped Nd∶YAG active-mirror master oscillator power amplifier system [J]. Appl. Phys. Express, 2015, 8(9): 092702-1-3. doi: 10.7567/apex.8.092702http://dx.doi.org/10.7567/apex.8.092702
LIU T, ZHAN S, LIN C, et al. 12 J, 10 Hz diode-pumped Nd∶YAG distributed active mirror amplifier chain with ASE suppression [J]. Opt. Express, 2017, 25(18): 21981-21992. doi: 10.1364/OE.25.021981http://dx.doi.org/10.1364/OE.25.021981
LIU T H, UI Z, CHEN L, et al. 50 mm-aperture Nd∶LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz [J]. Opt. Express, 2019, 27(11): 15595-15603.
LIU Q, GONG M L, LIU T H, et al. Efficient sub-joule energy extraction from a diode-pumped Nd∶LuAG amplifier seeded by a Nd∶YAG laser [J]. Opt. Lett., 2016, 41(22): 5322-5325.
李磊, 王建磊, 程小劲, 等. 低温重复率Yb∶YAG固体激光放大器 [J]. 红外与激光工程, 2013, 42(5): 1170-1173.
LI L, WANG J L, CHENG X J, et al. Cryogenic Yb∶YAG solid state pulsed laser amplifier [J]. Infrared Laser Eng., 2013, 42(5): 1170-1173. (in Chinese)
冷雨欣, 彭宇杰, 陈俊驰. 面向激光冲击强化的大能量激光源 [C]. 上海市激光学会2015年学术年会论文集, 上海, 2015.
LENG Y X, PENG Y J, CHEN J C. Large-energy laser source facing laser impact reinforcement [C]. Annual Meeting of Shanghai Laser Society, Shanghai, 2015. (in Chinese)
LIU J, LI L, SHI X C, et al. High-beam-quality, 5.4 J, 5 Hz diode-pumped Nd∶YAG active mirror laser amplifier [J]. Chin. Opt. Express, 2018, 16(12): 121402-1-3. doi: 10.3788/col201816.121402http://dx.doi.org/10.3788/col201816.121402
WANG J L, ZHAO K Q, FENG T, et al. 1.5 J high-beam-quality Nd∶LuAG ceramic active mirror laser amplifier [J]. Chin. Opt. Express, 2020, 18(2): 021401-1-3.
FAN Z W, QIU J S, KANG Z J, et al. High beam quality 5 J, 200 Hz Nd∶YAG laser system [J]. Light: Sci. Appl., 2017, 6(3): e17004-1-2. doi: 10.1038/lsa.2017.4http://dx.doi.org/10.1038/lsa.2017.4
王明哲, 段文涛, 曹丁象, 等. 激光二极管泵浦的重复频率大能量低温Yb∶YAG激光器设计 [J]. 强激光与粒子束, 2010, 22(1): 36-40. doi: 10.3788/hplpb20102201.0036http://dx.doi.org/10.3788/hplpb20102201.0036
WANG M Z, DUAN W T, CAO D X, et al. Laser diode pumped cryogenically cooled Yb∶YAG laser design for rep-rated and high-energy output [J]. High Power Laser Part. Beams, 2010, 22(1): 36-40. (in Chinese). doi: 10.3788/hplpb20102201.0036http://dx.doi.org/10.3788/hplpb20102201.0036
蒋新颖, 肖凯博, 王振国, 等. 重频大能量脉冲激光技术研究取得重要进展 [J]. 强激光与粒子束, 2021, 33(2): 022001-1-1.
JIANG X Y, XIAO K B, WANG Z G, et al. Important progress has been made in the research of heavy-frequency and large-energy pulsed laser technology [J]. High Power Laser Part. Beams, 2021, 33(2): 022001-1-1. (in Chinese)
孙维娜, 王伟力, 秘国江, 等. 激光二极管抽运高重复频率大能量激光器 [C]. 第十七届全国激光学术会议论文集, 绵阳, 2005: 28-30.
SUN W N, WANG W L, MI G J, et al. LD pumped laser system of high frequency and high energy [C]. National Laser Academic Conference, Mianyang, 2005: 28-30. (in Chinese)
SAMARKIN V, ALEXANDROV A, BORSONI G, et al. Wide aperture piezoceramic deformable mirrors for aberration correction in high-power lasers [J]. High Power Laser Sci. Eng., 2016, 4: e4-1-7. doi: 10.1017/hpl.2016.3http://dx.doi.org/10.1017/hpl.2016.3
蒋新颖. 高效重频大能量脉冲激光器关键技术研究 [D]. 北京: 中国工程物理研究院, 2020.
JIANG X Y. Study on Key Technologies of High Efficiency Repetition Frequency Large Energy Pulse Laser [D]. Beijing: China Academy of Engineering Physics, 2020. (in Chinese)
IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers [J]. J. Am. Ceram. Soc., 1995, 78(4): 1033-1040. doi: 10.1111/j.1151-2916.1995.tb08433.xhttp://dx.doi.org/10.1111/j.1151-2916.1995.tb08433.x
LU J, PRABHU M, UEDA K, et al. Potential of ceramic YAG lasers [J]. Laser Phys., 2001, 11(10): 1053-1057.
YAGI H, YANAGITANI T, TAKAICHI K, et al. Characterizations and laser performances of highly transparent Nd3+∶Y3Al5O12 laser ceramics [J]. Opt. Mater., 2007, 29: 1258-1262.
LI X D, LI J G, XIU Z M, et al. Transparent Nd∶YAG ceramics fabricated using nanosized γ-alumina and Yttria powders [J]. J. Am. Ceram. Soc., 2009, 92(1): 241-244. doi: 10.1111/j.1551-2916.2008.02830.xhttp://dx.doi.org/10.1111/j.1551-2916.2008.02830.x
GONG H, TANG D Y, HUANG H, et al. Agglomeration control of Nd∶YAG nanoparticles via freeze drying for transparent Nd∶YAG ceramics [J]. J. Am. Ceram. Soc., 2009, 92(4): 812-817. doi: 10.1111/j.1551-2916.2009.02987.xhttp://dx.doi.org/10.1111/j.1551-2916.2009.02987.x
WU Y S, LI J, PAN Y B, et al. Diode-pumped Yb∶YAG ceramic laser [J]. J. Am. Ceram. Soc., 2007, 90(10): 3334-3337. doi: 10.1111/j.1551-2916.2007.01885.xhttp://dx.doi.org/10.1111/j.1551-2916.2007.01885.x
IKESUE A, AUNG Y L, YODA T, et al. Fabrication and laser performance of polycrystal and single crystal Nd∶YAG by advanced ceramic processing [J]. Opt. Mater., 2007, 29(10): 1289-1294. doi: 10.1016/j.optmat.2005.12.013http://dx.doi.org/10.1016/j.optmat.2005.12.013
ZHOU J, ZHANG W X, WANG L, et al. Fabrication, microstructure and optical properties of polycrystalline Er∶Y3Al5O12 ceramics [J]. Ceram. Int., 2011, 37(1): 119-125.
ZHANG W, LU T C, WEI N, et al. Assessment of light scattering by pores in Nd∶YAG transparent ceramics [J]. J. Alloys Compd., 2012, 520: 36-41. doi: 10.1016/j.jallcom.2011.12.012http://dx.doi.org/10.1016/j.jallcom.2011.12.012
HOSTASA J, SCHWENTENWEIN M, TOCI G, et al. Transparent laser ceramics by stereolithography [J].Scripta Materialia, 2020, 187: 194-196. doi: 10.1016/j.scriptamat.2020.06.006http://dx.doi.org/10.1016/j.scriptamat.2020.06.006
MONCHAMP R R. The distribution coefficient on neodymium and lutetium in Czochralski grown Y3Al5O12 [J]. J. Cryst. Growth, 1971, 11(3): 310-312. doi: 10.1016/0022-0248(71)90101-1http://dx.doi.org/10.1016/0022-0248(71)90101-1
SEKINO T, SOGABE Y. Progress in the YAG crystal growth techniqe for solid state lasers [J]. Rev. Laser Eng., 1993, 21(8): 827-831. doi: 10.2184/lsj.21.827http://dx.doi.org/10.2184/lsj.21.827
徐学珍, 陈熙基, 姜腾雨, 等. 提高Nd∶YAG晶体中Nd3+离子浓度分布均匀性的研究 [J]. 人工晶体学报, 1998, 27(3): 232-252.
XU X Z, CHEN X J, JIANG T Y, et al. Study on improving the concentration homogeneity of Nd3+ ions in Nd∶YAG crystals [J]. J. Synth. Cryst., 1998, 27(3): 232-252. (in Chinese)
KOPYLOV Y L, KRAVCHENKO V B, BAGAYEV S N, et al. Development of Nd3+∶Y3Al5O12 laser ceramics by high- pressure colloidal slip-casting (HPCSC) method [J]. Opt. Mater., 2009, 31(5): 707-710.
KAMINSKII A A, AKCHURIN M S, ALSHITS V L, et al. New data on the physical properties of Y3Al5O12-based nanocrystalline laser ceramics [J]. Crystallogr. Rep., 2003, 48(3): 515-519. doi: 10.1134/1.1578145http://dx.doi.org/10.1134/1.1578145
TER-GABRIELYAN N, MERKLE L D, KUPP E R, et al. Efficient resonantly pumped tape cast composite ceramic Er∶YAG laser at 1 065 nm [J]. Opt. Lett., 2010, 35(7): 922-924. doi: 10.1364/ol.35.000922http://dx.doi.org/10.1364/ol.35.000922
MAH T I, PARTHASARATHY T A, LEE H D. Polycrystalline YAG structural and functional [J]. J. Ceram. Process Res., 2004, 5(4): 369-379.
QUARLES G J. State-of-the-art of polycrystalline oxide laser gain materials [C]. 46th Sagamore Army Materials Research Conference on Advances and Needs in Multi⁃Spectral Transparent Materials Technology, St. Michaels, 2005. doi: 10.1364/fio.2006.fmk4http://dx.doi.org/10.1364/fio.2006.fmk4
吴玉松. 稀土离子掺杂YAG激光透明陶瓷的研究 [D]. 上海: 中国科学院上海硅酸盐研究所, 2008.
WU Y S. Research on Lanthanides Doped YAG Transparent Ceramics [D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2008. (in Chinese)
KAMINSKII A. Laser crystals and ceramics: recent advances [J]. Laser Photon. Rev.,2007, 1(2): 93-177. doi: 10.1002/lpor.200710008http://dx.doi.org/10.1002/lpor.200710008
姜淳, 邓佩珍, 张俊洲, 等. 高发射截面掺镱氧化物玻璃 [J]. 光学学报, 2000, 20(9): 1287-1290. doi: 10.3321/j.issn:0253-2239.2000.09.025http://dx.doi.org/10.3321/j.issn:0253-2239.2000.09.025
JIANG C, DENG P Z, ZHANG J Z, et al. Yb∶oxide glass with high emission cross section [J]. Acta Opt. Sinica, 2000, 20(9): 1287-1290. (in Chinese). doi: 10.3321/j.issn:0253-2239.2000.09.025http://dx.doi.org/10.3321/j.issn:0253-2239.2000.09.025
於海武, 段文涛, 徐美健, 等. Yb激光材料综述 [J]. 激光与光电子学进展, 2007, 44(5): 30-41.
YU H W, DUAN W T, XU M J, et al. Review of ytterbium-doped laser materials [J]. Laser Optoelectron. Prog., 2007, 44(5): 30-41. (in Chinese)
KAWANANKA J, MIVANAGA N, TSUBAKIMOTO K, et al. New concept of laser fusion energy driver using cryogenic Yb∶YAG ceramics [C]. 21st IAEA Fusion Energy Conference, Chengdu, 2006: 16-21. doi: 10.3327/jaesj.49.199http://dx.doi.org/10.3327/jaesj.49.199
LACOVARA P, CHOI H K, WANG C A, et al. Room-temperature diode-pumped Yb∶YAG laser [J]. Opt. Lett., 1991, 16(14): 1089-1091. doi: 10.1364/ol.16.001089http://dx.doi.org/10.1364/ol.16.001089
ZHANG L, ZHOU T, CHEN H, et al. Advances in transparent Nd∶YAG laser ceramics [J]. Mater. Rev., 2017, 31(7A), 41-50.
LIU Y, YAO Z. Progress of YAG ceramic laser [J]. Laser Tech.,2014, 37(3): 326-329.
LU J R, MURAI T, TAKAICHI K, et al. 72 W Nd∶Y3Al5O12 ceramic laser [J]. Appl. Phys. Lett., 2001, 78(23): 3586-3588. doi: 10.1063/1.1378053http://dx.doi.org/10.1063/1.1378053
ALBACH D, CHANTELOUP J C, LE TOUZÉ G, et al. Influence of ASE on the gain distribution in large size, high gain Yb3+∶YAG slabs [J]. Opt. Express, 2009, 17(5): 3792-3801. doi: 10.1364/oe.17.003792http://dx.doi.org/10.1364/oe.17.003792
FURUSE H, KAWANAKA J, TAKESHITA K, et al. Total-reflection active-mirror laser with cryogenic Yb∶YAG ceramics [J]. Opt. Lett., 2009, 34(21): 3439-3441. doi: 10.1364/ol.34.003439http://dx.doi.org/10.1364/ol.34.003439
FURUSE H, KAWANAKA J, MIYANAGA N, et al. Zig-zag active- mirror laser with cryogenic Yb3+∶YAG/YAG composite ceramics [J]. Opt. Express, 2011, 19(3): 2448-2455. doi: 10.1364/oe.19.002448http://dx.doi.org/10.1364/oe.19.002448
TOKITA S, DIVOKY M, FURUSE H, et al. Generation of 500-mJ nanosecond pulses from a diode- pumped Yb∶YAG TRAM laser amplifier [J]. Opt. Mater. Express, 2014, 4(10): 2122-2126. doi: 10.1364/ome.4.002122http://dx.doi.org/10.1364/ome.4.002122
MASON P D, FITTON M, LINTERN A, et al. Scalable design for a high energy cryogenic gas cooled diode pumped laser amplifier [J]. Appl. Opt., 2015, 54(13): 4227-4238. doi: 10.1364/ao.54.004227http://dx.doi.org/10.1364/ao.54.004227
ERTEL K, BANERJEE S, MASON P D, et al. Optimising the efficiency of pulsed diode pumped Yb∶YAG laser amplifiers for ns pulse generation [J]. Opt. Express, 2011, 19(27): 26610-26626. doi: 10.1364/oe.19.026610http://dx.doi.org/10.1364/oe.19.026610
BANERJEE S, ERTEL K, MASON P D, et al. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb∶YAG laser [J]. Opt. Express, 2015, 23(15): 19542-19551. doi: 10.1364/oe.23.019542http://dx.doi.org/10.1364/oe.23.019542
NOVAK O, MIURA T, SMRŽ M, et al. Status of the high average power diode-pumped solid state laser development at HiLASE [J]. Appl. Sci., 2015, 5(4): 637-665. doi: 10.3390/app5040637http://dx.doi.org/10.3390/app5040637
BAYRAMIA A J, BIBEAU C, SCHAFFERS K I, et al. Gain saturation measurements of ytterbium-doped Sr5(PO4)3F [J]. Appl. Opt., 2000, 39(6): 982-985. doi: 10.1364/ao.39.000982http://dx.doi.org/10.1364/ao.39.000982
XU X D, WANG X D, MENG J Q, et al. Crystal growth, spectral and laser properties of Nd∶LuAG single crystal [J]. Laser Phys., 2009, 6(9): 678-681.
KUWANO Y, SUDA K, ISHIZAWA N, et al. Crystal growth and properties of (Lu,Y)3Al5O12 [J]. J. Cryst. Growth, 2004, 260(1-2): 159-165. doi: 10.1016/j.jcrysgro.2003.08.060http://dx.doi.org/10.1016/j.jcrysgro.2003.08.060
王晓丹, 徐晓东, 臧涛成, 等. Nd∶Lu3Al5O12晶体的生长与光谱性能研究 [J]. 无机材料学报, 2010, 25(4): 435-440. doi: 10.3724/sp.j.1077.2010.00435http://dx.doi.org/10.3724/sp.j.1077.2010.00435
WANG X D, XU X D, ZANG T C, et al. Growth and spectral properties of Nd∶Lu3Al5O12 crystal [J]. J. Inorg. Mater., 2010, 25(4): 435-440. (in Chinese). doi: 10.3724/sp.j.1077.2010.00435http://dx.doi.org/10.3724/sp.j.1077.2010.00435
BROWN D C, MCMILLEN C D, MOORE C, et al. Spectral properties of hydrothermally-grown Nd∶LuAG, Yb∶LuAG, and Yb∶Lu2O3 laser materials [J]. J. Lumin., 2014, 148: 26-32.
QIAO S Q, ZHANG Y, SHI X C, et al. Spectral properties and laser performance of Nd∶Lu3Al5O12 ceramic [J]. Chin. Opt. Lett., 2015, 13(5): 051602-1-4.
MA J, LU T T, ZHANG P X, et al. Actively Q-switched laser performance of Nd∶LuAG crystal with birefringence compensator [J]. Opt. Quantum Electron., 2015, 47(10): 3213-3220.
BOWMAN S R. Lasers without internal heat generation [J]. IEEE J. Quantum Electron., 1999, 35(1): 115-122. doi: 10.1109/3.737628http://dx.doi.org/10.1109/3.737628
ANDRIANOV S N, SAMARTSEV V. Solid state lasers with internal laser refrigeration effect [C]. Proceedings of SPIE 4605, PECS 2001: Photon Echo and Coherent Spectroscopy, Novgorod, 2001: 208-213.
LAVI R, JACKEL S. Thermally boosted pumping of neodymium lasers [J]. Appl. Opt., 2000, 39(18): 3093-3098. doi: 10.1364/ao.39.003093http://dx.doi.org/10.1364/ao.39.003093
LAVI R, JACKEL S, TZUK Y, et al. Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level [J]. Appl. Opt., 1999, 38(36): 7382-7385. doi: 10.1364/ao.38.007382http://dx.doi.org/10.1364/ao.38.007382
SATO Y, TAIRA T, PAVEL N, et al. Laser operation with near quantum-defect slope efficiency in Nd∶YVO4 under direct pumping into the emitting level [J]. Appl. Phys. Lett., 2003, 82(6): 844-846.
KIM J. Spray cooling heat transfer: the state of the art [J]. Int. J. Heat Fluid Flow, 2007, 28(4): 753-767. doi: 10.1016/j.ijheatfluidflow.2006.09.003http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.09.003
陈永平, 郑平. 新型分形树状微通道散热器的实验研究 [J]. 工程热物理学报, 2006, 27(5): 853-855. doi: 10.3321/j.issn:0253-231X.2006.05.042http://dx.doi.org/10.3321/j.issn:0253-231X.2006.05.042
CHEN Y P, ZHENG P. Development on fractal tree-like microchannel heat sink [J]. J. Eng. Thermophys., 2006, 27(5): 853-855. (in Chinese). doi: 10.3321/j.issn:0253-231X.2006.05.042http://dx.doi.org/10.3321/j.issn:0253-231X.2006.05.042
SILK E A, GOLLIHER E L, SELVAM R P. Spray cooling heat transfer: technology overview and assessment of future challenges for micro-gravity application [J]. Energy Convers. Manage., 2008, 49(3): 453-468. doi: 10.1016/j.enconman.2007.07.046http://dx.doi.org/10.1016/j.enconman.2007.07.046
王亚青, 刘明侯, 刘东, 等. 高功率激光器喷雾冷却的实验研究 [J]. 强激光与粒子束, 2009, 21(12): 1761-1766.
WANG Y Q, LIU M H, LIU D, et al. Experimental study on spray cooling for high-power laser [J]. High Power Laser Part. Beams, 2009, 21(12): 1761-1766. (in Chinese)
AGOSTINI B, FABBRI M, PARK J E, et al. State of the art of high heat flux cooling technologies [J]. Heat Transfer Eng., 2007, 28(4): 258-281. doi: 10.1080/01457630601117799http://dx.doi.org/10.1080/01457630601117799
0
Views
634
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution