浏览全部资源
扫码关注微信
1.浮法玻璃新技术国家重点实验室, 安徽 蚌埠 233000
2.上海应用技术大学 材料科学与工程学院, 上海 201418
3.中国科学院上海光学精密机械研究所 中国科学院强激光材料重点实验室, 上海 201800
Published:05 November 2022,
Received:30 June 2022,
Revised:13 July 2022,
移动端阅览
尹朋伟,李彦潮,赵文凯等.中红外稀土掺杂碲酸盐玻璃和光纤[J].发光学报,2022,43(11):1705-1720.
YIN Peng-wei,LI Yan-chao,ZHAO Wen-kai,et al.Mid-IR Rare Earth Doped Tellurite Glass and Optical Fiber[J].Chinese Journal of Luminescence,2022,43(11):1705-1720.
尹朋伟,李彦潮,赵文凯等.中红外稀土掺杂碲酸盐玻璃和光纤[J].发光学报,2022,43(11):1705-1720. DOI: 10.37188/CJL.20220263.
YIN Peng-wei,LI Yan-chao,ZHAO Wen-kai,et al.Mid-IR Rare Earth Doped Tellurite Glass and Optical Fiber[J].Chinese Journal of Luminescence,2022,43(11):1705-1720. DOI: 10.37188/CJL.20220263.
中红外稀土掺杂连续光纤激光在光声技术、红外制导、医疗手术、塑料加工以及5G通信等领域有着十分广阔的应用前景。然而,制备中红外稀土掺杂连续光纤激光器的光纤基质材料单一,再加上高增益光纤和器件的缺乏,大大限制了大功率单频连续光纤激光器的发展。本文对比了传统的石英光纤、氟化物光纤、硫系光纤和重金属氧化物光纤,最终将碲酸盐光纤作为阐述对象。重点阐述了国内外中红外稀土掺杂碲酸盐连续光纤激光的研究进展,目前2.0 μm波段的最高输出功率为8.08 W、最高斜率效率为77%;3.0 μm波段的理论模拟结果显示最高输出功率高达5.219 W、最高斜率效率可达40%。
Mid-infrared rare-earth doped continuous fiber laser has a wild application in the fields of photoacoustic technology, infrared countermeasures, medical surgery, plastic processing, 5G communication,
etc
. However, the development of high⁃power single-frequency CW fiber lasers is greatly limited by the single fiber matrix material used to prepare mid-infrared rare earth doped CW fiber lasers and the lack of high-gain fibers and devices.In this paper, the traditional silica fiber, fluoride fiber, chalcogenide fiber and heavy metal oxide fiber are compared, and finally tellurite fiber is taken as the elaboration object. At present, the highest output power of 2.0 μm band is 8.08 W, and the highest slope efficiency is 77%. Theoretical simulation results of 3.0 μm band show that the highest output power is up to 5.219 W and the highest slope efficiency is up to 40%.
中红外激光稀土掺杂连续光纤激光器碲酸盐光纤
mid-infrared laserrare earth doped continuous fiber lasertellurite fiber
YANG W Q, ZHANG B, HOU J, et al. A novel 2‑μm pulsed fiber laser based on a supercontinuum source and its application to mid‑infrared supercontinuumgeneration [J]. Chin. Phys. B, 2014, 23(5): 054208‑1-5.
杨俊彦, 公发全, 刘锐, 等. 中红外激光在光电对抗领域的应用及进展 [J]. 飞控与探测, 2020, 3(6): 34-42.
YANG J Y, GONG F Q, LIU R, et al. Application and progress of mid-infrared laser in optoelectronic countermeasure field [J]. Flight Control Detect., 2020, 3(6): 34-42. (in Chinese)
LI J F. Guest editorial special issue on mid-infrared lasers and applications [J]. J. Electron. Sci. Technol., 2015, 13(4): 289-290.
YAO T F, HUANG L J, ZHOU P, et al. Power scaling on tellurite glass Raman fibre lasers for mid-infrared applications [J]. High Power Laser Sci. Eng., 2018, 6: e24-1-9. doi: 10.1017/hpl.2018.14http://dx.doi.org/10.1017/hpl.2018.14
贾志旭, 姚传飞, 贾世杰, 等. 新型中红外玻璃光纤及相应激光器研究进展 [J]. 激光与光电子学进展, 2019, 56(17): 170604-1-15. doi: 10.3788/lop56.170604http://dx.doi.org/10.3788/lop56.170604
JIA Z X, YAO C F, JIA S J, et al. Progress on novel mid-infrared glass fibers and relative lasers [J]. Laser Optoelectron. Prog., 2019, 56(17): 170604-1-15. (in Chinese). doi: 10.3788/lop56.170604http://dx.doi.org/10.3788/lop56.170604
陈昊, 李剑峰, 欧中华, 等. 中红外光纤激光器的研究进展 [J]. 激光与光电子学进展, 2011, 48(11): 111402-1-10. doi: 10.3788/lop48.111402http://dx.doi.org/10.3788/lop48.111402
CHEN H, LI J F, OU Z H, et al. Progress of mid-infrared fiber lasers [J]. Laser Optoelectron. Prog., 2011, 48(11): 111402-1-10. (in Chinese). doi: 10.3788/lop48.111402http://dx.doi.org/10.3788/lop48.111402
WANG W C, ZHOU B, XU S H, et al. Recent advances in soft optical glass fiber and fiber lasers [J]. Prog. Mater. Sci., 2019, 101: 90-171. doi: 10.1016/j.pmatsci.2018.11.003http://dx.doi.org/10.1016/j.pmatsci.2018.11.003
HALE G M, QUERRY M R. Optical constants of water in the 200-nm to 200-μm wavelength region [J]. Appl. Opt., 1973, 12(3): 555-563. doi: 10.1364/ao.12.000555http://dx.doi.org/10.1364/ao.12.000555
RICHARDS B D O, JHA A, JOSE G, et al. Oxide glasses for mid-infrared lasers [C]. Proceedings of SPIE 8039, Laser Technology for Defense and Security Ⅶ, Orlando, Florida, 2011: 125-130. doi: 10.1117/12.886722http://dx.doi.org/10.1117/12.886722
卞进田, 聂劲松, 孙晓泉. 中红外激光技术及其进展 [J]. 红外与激光工程, 2006, 35(S3): 188-193. doi: 10.3969/j.issn.1007-2276.2006.z3.041http://dx.doi.org/10.3969/j.issn.1007-2276.2006.z3.041
BIAN J T, NIE J S, SUN X Q. Mid-infrared laser technology and its progress [J].Infrared Laser Eng., 2006, 35(S3): 188-193. (in Chinese). doi: 10.3969/j.issn.1007-2276.2006.z3.041http://dx.doi.org/10.3969/j.issn.1007-2276.2006.z3.041
阮双琛, 侯静, 李剑峰, 等. “先进中红外激光技术及应用”专题前言 [J]. 中国激光, 2022, 49(1): 0101000-1-2.
RUAN S C, HOU J, LI J F, et al. Special issue on technology and application of advanced mid-infrared lasers introduction [J]. Chin. J. Lasers, 2022, 49(1): 0101000-1-2. (in Chinese)
崔宇龙, 周智越, 黄威, 等. 中红外光纤激光技术研究进展与展望 [J]. 光学学报, 2022, 42(9): 0900001-1-30.
CUI Y L, ZHOU Z Y, HUANG W, et al. Progress and prospect of mid-infrared fiber laser technology [J]. Acta Opt. Sinica, 2022, 42(9): 0900001-1-30. (in Chinese)
徐瑶. 3 μm掺镝中红外连续与脉冲光纤激光器 [D]. 成都: 电子科技大学, 2020.
XU Y. 3 μm Dy3+‐doped Mid‐Infrared Continuous and Pulsed Fiber Laser [D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
刘尊洋, 卞进田, 邵立, 等. 中红外激光技术研究进展 [J]. 激光与红外, 2013, 43(8): 853-858. doi: 10.3969/j.issn.1001-5078.2013.08.002http://dx.doi.org/10.3969/j.issn.1001-5078.2013.08.002
LIU Z Y, BIAN J T, SHAO L, et al. Progress of mid-infrared laser technology [J]. Laser Infrared, 2013, 43(8): 853-858. (in Chinese). doi: 10.3969/j.issn.1001-5078.2013.08.002http://dx.doi.org/10.3969/j.issn.1001-5078.2013.08.002
包照日格图, 张大勇, 冯宇彤, 等. 可调谐中红外OPO激光器研究 [J]. 激光与红外, 2012, 42(9): 986-988. doi: 10.3969/j.issn.1001-5078.2012.09.005http://dx.doi.org/10.3969/j.issn.1001-5078.2012.09.005
BAO Z R G T, ZHANG D Y, FENG Y T, et al. Researchon tunable mid-infrared OPO laser [J]. Laser Infrared, 2012, 42(9): 986-988. (in Chinese). doi: 10.3969/j.issn.1001-5078.2012.09.005http://dx.doi.org/10.3969/j.issn.1001-5078.2012.09.005
楼祺洪, 周军, 朱健强, 等. 高功率光纤激光器研究进展 [J]. 红外与激光工程, 2006, 35(2): 135-138. doi: 10.3969/j.issn.1007-2276.2006.02.003http://dx.doi.org/10.3969/j.issn.1007-2276.2006.02.003
LOU Q H, ZHOU J, ZHU J Q, et al. Recent progress of high-power fiber lasers [J]. Infrared Laser Eng., 2006, 35(2): 135-138. (in Chinese). doi: 10.3969/j.issn.1007-2276.2006.02.003http://dx.doi.org/10.3969/j.issn.1007-2276.2006.02.003
申人升, 张玉书, 杜国同. 光纤激光器研究进展 [J]. 半导体光电, 2009, 30(1): 1-5.
SHEN R S, ZHANG Y S, DU G T. Laser development of fiber lasers [J]. Semicond. Optoelectron., 2009, 30(1): 1-5. (in Chinese)
WANG Z H, ZHANG B, LIU J, et al. Recent developments in mid-infrared fiber lasers: status and challenges [J]. Opt. Laser Technol., 2020, 132: 106497. doi: 10.1016/j.optlastec.2020.106497http://dx.doi.org/10.1016/j.optlastec.2020.106497
张飞飞. 掺稀土2~3 μm中红外氧氟玻璃发光特性研究 [D]. 广州: 华南理工大学, 2014.
ZHANG F F. The Study on 2-3 μm Mid‑infrared Luminescence Properties of Rare‑earth Doped Oxyfluoride Glass [D]. Guangzhou: South China University of Technology, 2014. (in Chinese)
SEDDON A B, TANG Z Q, FURNISS D, et al. Progress in rare-earth-doped mid-infrared fiber lasers [J]. Opt. Express, 2010, 18(25): 26704-26719. doi: 10.1364/oe.18.026704http://dx.doi.org/10.1364/oe.18.026704
祁思胜, 李森森, 胡红斌, 等. 高功率中红外激光传输硫化物玻璃光纤 [J]. 硅酸盐学报, 2022, 50(4): 950-956.
QI S S, LI S S, HU H B, et al.Sulfide glass fiber for high-power mid-infrared laser transmission [J].J. Chin. Ceram. Soc., 2022, 50(4): 950-956. (in Chinese)
刘自军, 卞俊轶, 黄炎, 等. 稀土掺杂硫系光纤中红外发光的研究进展 [J]. 激光与光电子学进展, 2017, 54(2): 020003-1-8. doi: 10.3788/lop54.020003http://dx.doi.org/10.3788/lop54.020003
LIU Z J, BIAN J Y, HUANG Y, et al. Research progress on rare earth ions doped chalcogenide fiber for mid-infrared luminescence [J]. Laser Optoelectron. Prog., 2017, 54(2): 020003-1-8. (in Chinese). doi: 10.3788/lop54.020003http://dx.doi.org/10.3788/lop54.020003
张龙, 张军杰, 祁长鸿, 等. 稀土离子掺杂的AlF3基氟化物玻璃 [J]. 物理学报, 2000, 49(8): 1620-1626. doi: 10.7498/aps.49.1620http://dx.doi.org/10.7498/aps.49.1620
ZHANG L, ZHANG J J, QI C H, et al. Rare earth doped AlF3-based flouride glass [J]. Acta Phys. Sinica, 2000, 49(8): 1620-1626. (in Chinese). doi: 10.7498/aps.49.1620http://dx.doi.org/10.7498/aps.49.1620
QI F W, HUANG F F, ZHOU L F, et al. Low-hydroxy Dy3+/Nd3+ co-doped fluoride glass for broadband 2.9 µm luminescence properties [J]. J. Lumin., 2017, 190: 392-396. doi: 10.1016/j.jlumin.2017.05.079http://dx.doi.org/10.1016/j.jlumin.2017.05.079
刘瑞特, 姜益光, 张龙飞, 等. 中红外氟化物玻璃光纤研究进展 [J]. 硅酸盐学报, 2022, 50(4): 1085-1099.
LIU R T, JIANG Y G, ZHANG L F, et al. Mid-infrared fluoride glass fibers—a short review [J]. J. Chin. Ceram. Soc., 2022, 50(4): 1085-1099. (in Chinese)
周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势 [J]. 中国激光, 2021, 48(20): 2000001-1-26. doi: 10.3788/CJL202148.2000001http://dx.doi.org/10.3788/CJL202148.2000001
ZHOU P, LENG J Y, XIAO H, et al. High average power fiber lasers:research progress and future prospect [J]. Chin. J. Lasers, 2021, 48(20): 2000001-1-26. (in Chinese). doi: 10.3788/CJL202148.2000001http://dx.doi.org/10.3788/CJL202148.2000001
李政, 李晋忠, 张昆, 等. 平均功率360 W的光谱合成纳秒脉冲光纤激光 [J]. 激光与红外, 2021, 51(12): 1610-1613.
LI Z, LI J Z, ZHANG K, et al. Spectrally-combined nanosecond pulsed fiber laser with an average power of 360 W [J]. Laser Infrared, 2021, 51(12): 1610-1613. (in Chinese)
WANG J S, VOGEL E M, SNITZER E. Tellurite glass: a new candidate for fiber devices [J]. Opt. Mater., 1994, 3(3): 187-203. doi: 10.1016/0925-3467(94)90004-3http://dx.doi.org/10.1016/0925-3467(94)90004-3
周跃芬,刘粤惠,戴世勋,等.宽带放大器用碲酸盐玻璃研究进展 [J].无机材料学报,2003(3):513-519. doi: 10.3321/j.issn:1000-324X.2003.03.001http://dx.doi.org/10.3321/j.issn:1000-324X.2003.03.001
ZHOU Y F, LIU Y H, DAI S X, et al. Advances in tellurite glass for broadband amplifier [J]. J. Inorg. Mater., 2003(3):513-519. (in Chinese). doi: 10.3321/j.issn:1000-324X.2003.03.001http://dx.doi.org/10.3321/j.issn:1000-324X.2003.03.001
RICHARDS B, JHA A, TSANG Y, et al. Tellurite glass lasers operating close to 2 µm [J]. Laser Phys. Lett., 2010, 7(3): 177-193. doi: 10.1002/lapl.200910131http://dx.doi.org/10.1002/lapl.200910131
王伟超, 袁健, 陈东丹, 等. 掺稀土光子玻璃近中红外发光与激光 [J]. 中国科学: 技术科学, 2015, 45(8): 809-824. doi: 10.1360/n092015-00018http://dx.doi.org/10.1360/n092015-00018
WANG W C, YUAN J, CHEN D D, et al. Recent advances in rare-earth-doped photonic glasses for near-and mid-infrared lasers [J]. Sci. Sinica Technol., 2015, 45(8): 809-824. (in Chinese). doi: 10.1360/n092015-00018http://dx.doi.org/10.1360/n092015-00018
李维炜, 张小金, 王航, 等. 3 μm中红外稀土掺杂光纤激光器研究进展 [J]. 激光与光电子学进展, 2019, 56(17): 170605-1-24. doi: 10.3788/lop56.170605http://dx.doi.org/10.3788/lop56.170605
LI W W, ZHANG X J, WANG H, et al. Research progress of mid-infrared rare earth ion-doped fiber lasers at 3 μm [J]. Laser Optoelectron. Prog., 2019, 56(17): 170605-1-24. (in Chinese). doi: 10.3788/lop56.170605http://dx.doi.org/10.3788/lop56.170605
刘沛沛, 白杨, 任兆玉, 等. 2 μm光纤激光器的研究进展 [J]. 红外与激光工程, 2009, 38(1): 45-49. doi: 10.3969/j.issn.1007-2276.2009.01.010http://dx.doi.org/10.3969/j.issn.1007-2276.2009.01.010
LIU P P, BAI Y, REN Z Y, et al. Research and progress of 2 μm fiber lasers [J]. Infrared Laser Eng., 2009, 38(1): 45-49. (in Chinese). doi: 10.3969/j.issn.1007-2276.2009.01.010http://dx.doi.org/10.3969/j.issn.1007-2276.2009.01.010
GENG J H, WANG Q, JIANG S B. 2μm fiber laser sources and their applications [C]. Proceedings of SPIE 8164, Nanophotonics and Macrophotonics for Space Environments Ⅴ, San Diego, 2011: 79-88. doi: 10.1117/12.896259http://dx.doi.org/10.1117/12.896259
李鑫, 杨超, 李永亮. 2 μm高功率掺铥连续光纤激光器研究进展 [J/OL]. 激光杂志, [2022-10-12].http://kns.cnki.net/kcms/detail/50.1085.TN.20220525.1913.002.htmlhttp://kns.cnki.net/kcms/detail/50.1085.TN.20220525.1913.002.html.
LI X, YANG C, LI Y L. Research progress of 2 μm high power thulium-doped CW fiber laser [J/OL]. Laser J., [2022-10-12]. http://kns.cnki.net/kcms/detail/50.1085.TN.20220525.1913.002.html.http://kns.cnki.net/kcms/detail/50.1085.TN.20220525.1913.002.html.(in Chinese)
袁健. 2.0 μm波段稀土掺杂碲酸盐玻璃光纤及其光谱和激光实验研究 [D]. 广州: 华南理工大学, 2015.
YUAN J. Rare Earth Doped Tellurite Glass Fibers and Their Spectroscopic Properties for the Lasers Operating at 2.0 μm Region and the Laser Experimental Research [D]. Guangzhou: South China University of Technology, 2015. (in Chinese)
SCHOLLE K, LAMRINI S, KOOPMANN P, et al. 2 µm laser sources and their possible applications [M]. PAL B. Frontiersin Guided Wave Optics & Optoelectronics. Vukovar: Intech Open, 2010. doi: 10.5772/39538http://dx.doi.org/10.5772/39538
HANNA D C, JAUNCEY I M, PERCIVAL R M, et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser [J]. Electron. Lett.,1988, 24(19): 1222-1223. doi: 10.1049/el:19880831http://dx.doi.org/10.1049/el:19880831
MORI A, OHISHI Y, SUDO S. Erbium-doped tellurite glass fibre laser and amplifier [J]. Electron. Lett.,1997, 33(10): 863-864. doi: 10.1049/el:19970585http://dx.doi.org/10.1049/el:19970585
WU J F, JIANG S B, QIU T Q, et al. Tm3+ doped tellurite glass microsphere laser [C]. Proceedings of SPIE 5723, Optical Components and Materials Ⅱ, San Jose, 2005: 21-26. doi: 10.1117/12.592296http://dx.doi.org/10.1117/12.592296
RICHARDS B D O, SHEN S X, JHA A. Spectroscopy of Tm-Ho co-doped tellurite glass for mid-IR fibre lasers in 1.8-2.2 μm [C]. Proceedings of SPIE 5984, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing, Bruges, 2005: 598407.
RICHARDS B, TSANG Y H, BINKS D J, et al. 1.91-1.99 μm Tm3+/Yb3+ co-doped tellurite fibre laser pumped using a 1 088 nm Yb3+ fibre laser [C]. Proceedings of the CLEO/Europe and IQEC 2007 Conference Digest, Munich, 2007: CJ_27.
RICHARDS B, TSANG Y, BINKS D, et al. Efficient ~2 μm Tm3+-doped tellurite fiber laser [J]. Opt. Lett., 2008, 33(4): 402-404.
TSANG Y, RICHARDS B, BINKS D, et al. Tm3+/Ho3+ codoped tellurite fiber laser [J]. Opt. Lett., 2008, 33(11): 1282-1284. doi: 10.1364/ol.33.001282http://dx.doi.org/10.1364/ol.33.001282
TSANG Y, RICHARDS B, BINKS D, et al. A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser [J]. Opt. Express, 2008, 16(14): 10690-10695. doi: 10.1364/oe.16.010690http://dx.doi.org/10.1364/oe.16.010690
VETTER S L, MCKNIGHT L J, CALVEZ S, et al. GaInNAs semiconductor disk lasers as pump sources forTm3+ (,Ho3+)-doped glass, crystal and fibre lasers [C]. Proceedings of SPIE 7193, Solid State Lasers ⅩⅧ: Technology and Devices, San Jose, 2009: 719317. doi: 10.1117/12.811116http://dx.doi.org/10.1117/12.811116
FUSARI F, VETTER S, LAGATSKY A A, et al. Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1 211 nm semiconductor disk laser [J]. Opt. Mater., 2010, 32(9): 1007-1010. doi: 10.1016/j.optmat.2010.02.020http://dx.doi.org/10.1016/j.optmat.2010.02.020
DENKER B I, DOROFEEV V V, GALAGAN B I, et al. 2.3 µm laser potential of TeO2 based glasses [J]. Laser Phys., 2017, 27(9): 095801-1-5. doi: 10.1088/1555-6611/aa7548http://dx.doi.org/10.1088/1555-6611/aa7548
MURAVYEV S V, ANASHKINA E A, ANDRIANOV A V, et al. Dual-band Tm3+-doped tellurite fiber amplifier and laser at 1.9 μm and 2.3 μm [J]. Sci. Rep., 2018, 8(1): 16164-1-13. doi: 10.1038/s41598-018-34546-whttp://dx.doi.org/10.1038/s41598-018-34546-w
DENKER B I, DOROFEEV V V, GALAGAN B I, et al. A 200 mW, 2.3 µm Tm3+-doped tellurite glass fiber laser [J]. Laser Phys. Lett., 2020, 17(9): 095101-1-4. doi: 10.1088/1612-202x/aba0behttp://dx.doi.org/10.1088/1612-202x/aba0be
LI K F, ZHANG G,HU L L. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber [J]. Opt. Lett., 2010, 35(24): 4136-4138.
LI K F, HU L L, ZHANG G, et al. ~2 μm laser output in short length highly Tm3+-doped tungsten tellurite glass double cladding fiber [C]. Proceedings of the Advancesin Optical Materials 2011, Istanbul, 2011: AIWB3. doi: 10.1364/aiom.2011.aiwb3http://dx.doi.org/10.1364/aiom.2011.aiwb3
LI K F, ZHANG G, WANG X, et al. Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser [J]. Opt. Express, 2012, 20(9): 10115-10121. doi: 10.1364/oe.20.010115http://dx.doi.org/10.1364/oe.20.010115
HE J L, ZHAN H, ZHOU Z G, et al. Study on 2.0 μm fluorescence of Ho-doped water-free fluorotellurite glasses [J]. Opt. Mater., 2013, 35(12): 2573-2576. doi: 10.1016/j.optmat.2013.07.031http://dx.doi.org/10.1016/j.optmat.2013.07.031
姚传飞, 贾志旭, 王顺宾,等. Tm3+掺杂碲酸盐微结构光纤激光器 [J]. 发光学报, 2014, 35(9): 1109-1113. doi: 10.3788/fgxb20143509.1109http://dx.doi.org/10.3788/fgxb20143509.1109
YAO C F, JIA Z X, WANG S B, et al. Tm3+ doped tellurite microstructure fiber laser [J]. Chin. J. Lumin., 2014, 35(9): 1109-1113. (in Chinese). doi: 10.3788/fgxb20143509.1109http://dx.doi.org/10.3788/fgxb20143509.1109
孟祥伟, 姚传飞, 王善德, 等. Tm3+/Ho3+共掺碲酸盐微结构光纤激光器 [J]. 发光学报, 2015, 36(1): 94-98.
MENG X W, YAO C F, WANG S D, et al. Tm3+/Ho3+ co-doped tellurite microstructure fiber lasers [J]. Chin. J. Lumin., 2015, 36(1): 94-98. (in Chinese)
WANG S B, YAO C F, JIA Z X, et al. 1887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers [J]. Opt. Mater., 2017, 66: 640-643. doi: 10.1016/j.optmat.2017.03.019http://dx.doi.org/10.1016/j.optmat.2017.03.019
LI D H, XU W B, KUAN P W, et al. Spectroscopic and laser properties of Ho3+ doped lanthanum‐tungsten‐tellurite glass and fiber [J]. Ceram. Int., 2016, 42(8): 10493-10497. doi: 10.1016/j.ceramint.2016.03.076http://dx.doi.org/10.1016/j.ceramint.2016.03.076
LI L X, WANG W C, ZHANG C F, et al. 2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser [J]. Opt. Mater. Express, 2016, 6(9): 2904-2914. doi: 10.1364/ome.6.002904http://dx.doi.org/10.1364/ome.6.002904
ZHAO Z P, YAO C F, LI Z R, et al. 8.08 W holmium doped fluorotellurite fiber laser at 2 067 nm [J]. Laser Phys. Lett., 2019, 16(11): 115101-1-6. doi: 10.1088/1612-202x/ab4599http://dx.doi.org/10.1088/1612-202x/ab4599
ZHOU D C, BAI X M, ZHOU H. Preparation of Ho3+/Tm3+ co-doped lanthanum tungsten germanium tellurite glass fiber and its laser performance for 2.0 μm [J]. Sci. Rep., 2017, 7: 44747-1-9. doi: 10.1038/srep44747http://dx.doi.org/10.1038/srep44747
YUAN J, WANG W C, YE Y C, et al. 2.0 μm ultra broadband emission from Tm3+/Ho3+co-doped gallium tellurite glasses for broadband light sources and tunable fiber lasers [J]. Crystals, 2021, 11(2): 190-1-11. doi: 10.3390/cryst11020190http://dx.doi.org/10.3390/cryst11020190
SONG C L, XU P F, ZHOU D C, et al. Structure, and luminescence properties in Tm3+/Yb3+ co-doped bismuth-tellurite glass for 2 μm fiber lasers [J]. J. Non‑Cryst. Solids, 2022, 593: 121784.
樊浩泽, 梁金辉, 郑树锴, 等. 2.8 μm中红外同步泵浦锁模光纤激光器 [J]. 中国激光, 2022, 49(1): 0101020-1-9.
FAN H Z, LIANG J H, ZHENG S K, et al. 2.8 μm mid-infrared synchronously pumped mode-locked fiber laser [J]. Chin. J. Lasers, 2022, 49(1): 0101020-1-9. (in Chinese)
王鹏飞, 刘墨, 张集权, 等. 基于氟化铝基玻璃光纤的瓦级~3 μm激光 [J]. 强激光与粒子束, 2021, 33(11): 111001-1-4.
WANG P F, LIU M, ZHANG J Q, et al. Watt-level ~3 μm laser in AlF3-based glass fiber [J].High Power Laser Part. Beams, 2021, 33(11): 111001-1-4. (in Chinese)
罗鸿禹. 2~4微米中红外脉冲光纤激光器研究 [D]. 成都: 电子科技大学, 2019.
LUO H Y. Research on Pulsed Mid-Infrared Fiber Laser Operating at 2-4 μm [D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
张新, 舒世立, 佟存柱. 3 μm波长Er∶ZBLAN光纤激光器研究进展 [J]. 光电工程, 2019, 46(8): 190070-1-9.
ZHANG X, SHU S L, TONG C Z. Research progress of Er∶ZBLAN fiber lasers at the wavelength of 3 μm [J]. Opto-Electron. Eng., 2019, 46(8): 190070-1-9. (in Chinese)
EBENDORFF-HEIDEPRIEM H, FOO T C, LI Y H, et al. New tellurite glasses for erbium fibre lasers [C]. Proceedings of the Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology, Sydney, 2008: 1-2. doi: 10.1109/oeccacoft.2008.4610515http://dx.doi.org/10.1109/oeccacoft.2008.4610515
OERMANN M R, EBENDORFF-HEIDEPRIEM H, LI Y H, et al. Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass [J]. Opt. Express, 2009, 17(18): 15578-15584. doi: 10.1364/oe.17.015578http://dx.doi.org/10.1364/oe.17.015578
RICHARDS B D O, TEDDY-FERNANDEZ T, JHA A, et al. Mid-infrared emission from Dy3+ doped tellurite bulk glass and waveguides [C]. Proceedings of SPIE 8534, Remote Sensing of Clouds and the Atmosphere ⅩⅧ;and Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing Ⅷ, Edinburgh, 2012: 853411. doi: 10.1117/12.981384http://dx.doi.org/10.1117/12.981384
WANG W C, YUAN J, LI L X, et al. Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications [J]. Opt. Mater. Express, 2015, 5(12): 2964-2977. doi: 10.1364/ome.5.002964http://dx.doi.org/10.1364/ome.5.002964
WANG W C, LI L X, CHEN D D, et al. Numerical analysis of 2.7 μm lasing in Er3+-doped tellurite fiber lasers [J]. Sci. Rep., 2016, 6: 31761-1-10. doi: 10.1038/srep31761http://dx.doi.org/10.1038/srep31761
LIU J L, XIAO Y B, HUANG S J, et al. The glass-forming region and 2.7 μm emission of Er3+-doped TeO2- Ta2O5-ZnO tellurite glass [J]. J. Non-Cryst. Solids, 2019, 522: 119564.
WANG W C, MAO L Y, LIU J L, et al. Glass-forming regions and enhanced 2.7 μm emission by Er3+ heavily doping in TeO2-Ga2O3-R2O (or MO) glasses [J]. J. Am. Ceram. Soc., 2020, 103(9): 4999-5012.
ZHANG Y Q, LI X X, WANG W C, et al. Intense emission at 2.9 μm from Yb3+/Ho3+ co-doped TeO2-Ga2O3-ZnO tellurite glasses [J]. J. Am. Ceram. Soc., 2021, 104(7): 2924-2931. doi: 10.1111/jace.17766http://dx.doi.org/10.1111/jace.17766
YUAN J, DENG T T, XIAO P, et al. Strong and broadband 2.7 μm fluorescence of Yb3+/Er3+ co-doped ZnO modified tungsten tellurite glasses for broadband mid-infrared optical amplifiers and tunable fiber lasers [J]. J. Lumin., 2022, 246: 118840. doi: 10.1016/j.jlumin.2022.118840http://dx.doi.org/10.1016/j.jlumin.2022.118840
HE J L, ZHOU Z G, ZHAN H, et al. 2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses [J]. J. Lumin., 2014, 145: 507-511. doi: 10.1016/j.jlumin.2013.08.020http://dx.doi.org/10.1016/j.jlumin.2013.08.020
ZHAN H, ZHANG A D, HE J L, et al. Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses [J]. J. Alloys Compd., 2014, 582: 742-746. doi: 10.1016/j.jallcom.2013.07.211http://dx.doi.org/10.1016/j.jallcom.2013.07.211
ZHANG F F, ZHANG W J, YUAN J, et al. Enhanced 2.7 μm emission from Er3+ doped oxyfluoride tellurite glasses for a diode-pump mid-infrared laser [J]. AIP Adv., 2014, 4(4): 047101-1-11. doi: 10.1063/1.4870581http://dx.doi.org/10.1063/1.4870581
XUE T F, LI Y, LIU Y Y, et al. High thermal stability and intense 2.71 μm emission in Er3+ -doped fluorotellurite glass modified by GaF3 [J]. Opt. Mater., 2018, 75: 367-372. doi: 10.1016/j.optmat.2017.10.055http://dx.doi.org/10.1016/j.optmat.2017.10.055
QI F W, HUANG F F, WANG T, et al. Highly Er3+ doped fluorotellurite glass for 1.5 µm broadband amplification and 2.7 µm microchip laser applications [J]. J. Lumin., 2018, 202: 132-135. doi: 10.1016/j.jlumin.2018.05.049http://dx.doi.org/10.1016/j.jlumin.2018.05.049
WAN R, WANG P F, LI S W, et al. Spectroscopic properties of ErF3 doped tellurite-gallium oxyfluoride glass for ∼ 3 μm laser materials [J]. J. Appl. Phys., 2021, 129(15): 153105-1-11.
LIU C Z, FENG S H, XIAO X S, et al. Intense 2.85 μm mid-infrared emissions in Yb3+/Ho3+ codoped and Yb3+/Er3+/Ho3+ tridoped TBLL fluorotellurite glasses and their energy transfer mechanism [J]. Ceram. Int., 2022, 48(4): 5267-5273. doi: 10.1016/j.ceramint.2021.11.068http://dx.doi.org/10.1016/j.ceramint.2021.11.068
FENG S H, LIU C Z, CUI J, et al. Intense 2.71-μm fluorescence emission in low hydroxyl heavily Er3+-doped fluorotellurite glass for mid-infrared fiber laser [J]. J. Non-Cryst. Solids, 2022, 586: 121569-1-9.
0
Views
405
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution