浏览全部资源
扫码关注微信
1.南京林业大学 材料科学与工程学院, 江苏 南京 210000
2.南京林业大学 江苏省林产品高效加工利用联合创新中心, 江苏 南京 210000
3.南京林业大学 绿色生物质燃料与化学品江苏省重点实验室, 江苏 南京 210000
4.2019年江苏省研究生工作站:靖江国林木业有限公司 (工作站编号:2019_099), 江苏 靖江 214500
Published:05 December 2022,
Received:04 July 2022,
Revised:25 July 2022,
扫 描 看 全 文
胡妙言,刘凯,高诗雨等.淡竹叶碳量子点的微波法制备及在细胞成像中的应用探究[J].发光学报,2022,43(12):2001-2019.
HU Miao-yan,LIU Kai,GAO Shi-yu,et al.Microwave Preparation of Common Lophatherum Herb Carbon Quantum Dots and Application in Cell Imaging[J].Chinese Journal of Luminescence,2022,43(12):2001-2019.
胡妙言,刘凯,高诗雨等.淡竹叶碳量子点的微波法制备及在细胞成像中的应用探究[J].发光学报,2022,43(12):2001-2019. DOI: 10.37188/CJL.20220256.
HU Miao-yan,LIU Kai,GAO Shi-yu,et al.Microwave Preparation of Common Lophatherum Herb Carbon Quantum Dots and Application in Cell Imaging[J].Chinese Journal of Luminescence,2022,43(12):2001-2019. DOI: 10.37188/CJL.20220256.
利用响应曲面法 (RSM)系统研究了微波作用时间 (
T
)、微波功率 (
W
)、淡竹叶与去离子水的料液比 (
R
)对微波法制备淡竹叶氮硅自掺杂碳量子点 (N/Si⁃CQDs)荧光量子产率 (QY)的影响。得到了上述工艺参数对QY的影响显著性次序以及对应的QY回归模型与最佳工艺参数,通过验证实验证明优化结果可靠。采用最佳工艺得到的N/Si⁃CQDs的平均粒径较小且分布均匀,在水中分散性良好,具有激发依赖的发射特性,荧光稳定性较高,对HEK293细胞具有较低细胞毒性,且可被细胞吸收而照亮细胞从而明确区分细胞质和细胞核,说明该碳量子点可用于细胞成像。该研究不仅为淡竹叶的高值化利用提供了一个新思路,而且对提高生物质碳量子点的微波法制备效率、促进其在细胞成像等生物医学领域的应用具有参考价值。
In this study, response surface methodology(RSM) was used to study the effects of microwave action time (
T
), microwave power(
W
) and the ratio of common lophatherum herb to deionized water (
R
)
on the fluorescence quantum yield (QY) of N/Si-CQDs prepared by microwave method. The significance order of the influence of the above process parameters on QY, and the corresponding QY regression model and the best process parameters are obtained, and the optimization results are proved to be reliable through validation experiments. The average particle size of N/Si-CQDs obtained by the best process is small and evenly distributed, with good dispersion in water, excitation dependent emission characteristics, high fluorescence stability, low cytotoxicity to HEK293 cells. And the N/Si CQDs can be absorbed by cells to illuminate cells, so as to clearly distinguish cytoplasm and nucleus, which shows that the N/Si-CQDs can be used for cell imaging. This study not only provides a new idea for the high-value utilization of bamboo leaves, but also has reference value for improving the efficiency of microwave preparation of biomass carbon quantum dots and promoting their application in biomedical fields such as cell imaging.
淡竹叶碳量子点微波法响应曲面法细胞成像
common lophatherum herbcarbon quantum dotsmicrowave methodresponse surface methodcell imaging
ARCHITHA N, RAGUPATHI M, SHOBANA C, et al. Microwave-assisted green synthesis of fluorescent carbon quantum dots from Mexican Mint extract for Fe3+ detection and bio-imaging applications [J]. Environ. Res., 2021, 199: 111263. doi: 10.1016/j.envres.2021.111263http://dx.doi.org/10.1016/j.envres.2021.111263
REAGEN S, WU Y F, LIU X, et al. Synthesis of highly near-infrared fluorescent graphene quantum dots using biomass-derived materials for in vitro cell imaging and metal ion detection [J]. ACS Appl. Mater. Interfaces, 2021, 13 (37): 43952-43962.
HUANG C X, DONG H L, SU Y, et al. Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging [J]. Nanomaterials, 2019, 9 (3): 387-1-11.
WANG W X, CHEN J, WANG D K, et al. Facile synthesis of biomass waste-derived fluorescent N, S, P co-doped carbon dots for detection of Fe3+ ions in solutions and living cells [J]. Anal. Methods, 2021, 13 (6): 789-795.
LI J W, XU O W, ZHU X S. A facile green and one-pot synthesis of grape seed-derived carbon quantum dots as a fluorescence probe for Cu (Ⅱ) and ascorbic acid [J]. RSC Adv., 2021, 11 (54): 34107-34116. doi: 10.1039/D1RA05656Ehttp://dx.doi.org/10.1039/D1RA05656E
MAN H S, CHAIMA M, WANG X Y, et al. Fluorescent detection of organophosphorus pesticides using carbon dots derived from broccoli [J]. Arab. J. Sci. Eng., 2022, doi: 10.1007/s13369-022-06675-yhttp://dx.doi.org/10.1007/s13369-022-06675-y.
ZHANG H F, ZHOU Q, HAN X, et al. Nitrogen-doped carbon dots derived from hawthorn for the rapid determination of chlortetracycline in pork samples [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 255: 119736-1-9. doi: 10.1016/j.saa.2021.119736http://dx.doi.org/10.1016/j.saa.2021.119736
ZHU Z Q, YANG P, LI X H, et al. Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227: 117659-1-7.
WU P, WU X Y, LI W, et al. Ultra-small amorphous carbon dots: preparation, photoluminescence properties, and their application as TiO2 photosensitizers [J]. J. Mater. Sci., 2019, 54 (7): 5280-5293. doi: 10.1007/s10853-018-3135-1http://dx.doi.org/10.1007/s10853-018-3135-1
YANG C X, OGAKI R, HANSEN L, et al. Theranostic carbon dots derived from garlic with efficient anti-oxidative effects towards macrophages [J]. RSC Adv., 2015, 5 (118): 97836-97840.
LIU Y H, GUO D D, GAO Y, et al. Non-thermal effect of microwave on the chemical structure and luminescence properties of biomass-derived carbon dots via hydrothermal method [J]. Appl. Surf. Sci., 2021, 552: 149503-1-8. doi: 10.1016/j.apsusc.2021.149503http://dx.doi.org/10.1016/j.apsusc.2021.149503
王军丽, 王亚玲, 郑静霞, 等. 碳量子点激发依赖荧光特性的机理、调控及应用 [J]. 化学进展, 2018, 30 (8): 1186-1201. doi: 10.7536/PC180103http://dx.doi.org/10.7536/PC180103
WANG J L, WANG Y L, ZHENG J X, et al. Mechanism, tuning and application of excitation-dependent fluorescence property in carbon dots [J]. Prog. Chem., 2018, 30 (8): 1186-1201.(in Chinese). doi: 10.7536/PC180103http://dx.doi.org/10.7536/PC180103
TEJWAN N, SAHA S K, DAS J. Multifaceted applications of green carbon dots synthesized from renewable sources [J]. Adv. Colloid Interface Sci., 2020, 275: 102046-1-18.
PERUMAL S, ATCHUDAN R, EDISON T N J I, et al. Sustainable synthesis of multifunctional carbon dots using biomass and their applications: a mini-review [J]. J. Environ. Chem. Eng., 2021, 9 (4): 105802-1-15.
CAGLAYAN M O, MINDIVAN F, ŞAHIN S. Sensor and bioimaging studies based on carbon quantum dots: the green chemistry approach [J]. Crit. Rev. Anal. Chem., 2022, 52 (4): 814-847.
蒋雪薇, 叶菁, 许延涛, 等. 掺氮碳量子点的微波法制备及其光学性能研究 [J]. 发光学报, 2018, 39 (8): 1075-1081.
JIANG X W, YE J, XU Y T, et al. Nitrogen doped carbon quantum dots by microwave reaction production method and optical property [J]. Chin. J. Lumin., 2018, 39 (8): 1075-1081.(in Chinese)
HE H, AN F P, WANG Y W, et al. Effects of pretreatment, NaOH concentration, and extraction temperature on the cellulose from Lophatherum gracile Brongn [J]. Int. J. Biol. Macromol., 2021, 190: 810-818.
ZHOU C B, ZHOU X L, DAI T R, et al. Chloroplast genome structure and phylogenetic position of Lophatherum gracile [J]. Mitochondrial. DNA B, 2021, 6 (1): 26-28.
HE Q F, LI Y J, LIU J F, et al. Hepatoprotective activity of Lophatherum gracile leaves of ethanol extracts against carbon tetrachloride-induced liver damage in mice [J]. Int. J. Pharmacol., 2016, 12 (4): 387-393. doi: 10.3923/ijp.2016.387.393http://dx.doi.org/10.3923/ijp.2016.387.393
MA N H, GUO J, CHEN S H X, et al. Antioxidant and compositional HPLC analysis of three common bamboo leaves [J]. Molecules, 2020, 25 (2): 409-1-14.
WANG L Y, GUO H Y, WANG J, et al. Effects of Herba Lophatheri extract on the physicochemical properties and biological activities of the chitosan film [J]. Int. J. Biol. Macromol., 2019, 133: 51-57. doi: 10.1016/j.ijbiomac.2019.04.067http://dx.doi.org/10.1016/j.ijbiomac.2019.04.067
黄泽豪, 蔡慧卿, 郑丽香, 等. 中药淡竹叶的本草图文考 [J]. 中药材, 2017, 40 (4): 973-977.
HUANG Z H, CAI H Q, ZHENG L X, et al. Textual research on Chinese herbal medicine light bamboo leaf [J]. J. Chin. Med. Mater., 2017, 40 (4): 973-977.(in Chinese)
CANDIOTI L V, DE ZAN M M, CÁMARA M S, et al. Experimental design and multiple response optimization. Using the desirability function in analytical methods development [J]. Talanta, 2014, 124: 123-138.
LAI K H, CHEN P J, CHEN C C, et al. Lophatherum gracile Brongn. attenuates neutrophilic inflammation through inhibition of JNK and calcium [J]. J. Ethnopharmacol., 2021, 264: 113224-1-10.
CHIN C L, GOH J B, SRINIVASAN H, et al. A human expression system based on HEK293 for the stable production of recombinant erythropoietin [J]. Sci. Rep., 2019, 9 (1): 16768-1-16.
GONG X C, GAO X, DU W X, et al. Wood powder-derived quantum dots for CeO2 photocatalytic and anti-counterfeit applications [J]. Opt. Mater., 2019, 96: 109302-1-10.
WANG X, YANG P, FENG Q, et al. Green preparation of fluorescent carbon quantum dots from cyanobacteria for biological imaging [J]. Polymers, 2019, 11 (4): 616-1-12.
ZHOU L F, QIAO M, ZHANG L, et al. Green and efficient synthesis of carbon quantum dots and their luminescent properties [J]. J. Lumin., 2019, 206: 158-163.
LIANG C Z, XIE X B, ZHANG D D, et al. Biomass carbon dots derived from Wedelia trilobata for the direct detection of glutathione and their imaging application in living cells [J]. J. Mater. Chem. B, 2021, 9 (28): 5670-5681. doi: 10.1039/d0tb02979chttp://dx.doi.org/10.1039/d0tb02979c
KUMAR M, DAHUJA A, TIWARI S, et al. Recent trends in extraction of plant bioactives using green technologies: a review [J]. Food Chem., 2021, 353: 129431-1-19.
KARIMIFARD S, MOGHADDAM M R A. Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review [J]. Sci. Total Environ., 2018, 640-641: 772-797.
YOLMEH M, JAFARI S M. Applications of response surface methodology in the food industry processes [J]. Food Bioprocess. Technol., 2017, 10 (3): 413-433.
MU Z, HUA J H, YANG Y L. N, S, I co-doped carbon dots for folic acid and temperature sensing and applied to cellular imaging [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 224: 117444-1-9.
WANG P, ZHONG R B, YUAN M, et al. Mercury(Ⅱ) detection by water-soluble photoluminescent ultra-small carbon dots synthesized from cherry tomatoes [J]. Nucl. Sci. Technol., 2016, 27 (2): 35-1-5.
YUE H, YUAN L, ZHANG W W, et al. Macrophage responses to the physical burden of cell-sized particles [J]. J. Mater. Chem. B, 2018, 6 (3): 393-400.
JIANG Y L, WANG Z Y, DAI Z H. Preparation of silicon-carbon-based dots@dopamine and its application in intracellular Ag+ detection and cell imaging [J]. ACS Appl. Mater. Interfaces, 2016, 8 (6): 3644-3650.
PRASEETHA P K, NIJAM M A, VIBALA B V, et al. Aloe-vera conjugated natural carbon quantum dots as bio-enhancers to accelerate the repair of chronic wounds [J]. Ind. Crops Prod., 2021, 174: 114152-1-12.
SHEN S S, HUANG B H, GUO X F, et al. A dual-responsive fluorescent sensor for Hg2+ and thiols based on N-doped silicon quantum dots and its application in cell imaging [J]. J. Mater. Chem. B, 2019, 7 (44): 7033-7041.
GUO D D, LYU Y N, GAO Y, et al. Synthesis, solution and solid-state fluorescence of nitrogen self-doped carbon dots derived from Chlorella pyrenoidosa [J]. Colloids Surface A Physicochem. Eng. Aspects, 2021, 631: 127741-1-10.
YE H L, SHANG Y, WANG H Y, et al. Determination of Fe (Ⅲ) ion and cellular bioimaging based on a novel photoluminescent silicon nanoparticles [J]. Talanta, 2021, 230: 122294-1-10.
LI Z Y, WANG Q H, ZHOU Z X, et al. Green synthesis of carbon quantum dots from corn stalk shell by hydrothermal approach in near-critical water and applications in detecting and bioimaging [J]. Microchem. J., 2021, 166: 106250-1-8.
LIU J Y, ZHANG J B, ZHANG Y, et al. A pH-responsive fluorometric and colorimetric system based on silicon quantum dots and 4-nitrophenol for urease activity detection [J]. Talanta, 2022, 237: 122956-1-10.
LI Q Y, WANG Y Q, JIANG M, et al. Hydrophilic silicon nanoparticles as a turn-off and colorimetric fluorescent probe for curcuminoids detection in food samples and cell imaging [J]. Food Chem., 2022, 366: 130629-1-10.
HU X T, LI Y X, XU Y W, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk [J]. Food Chem., 2021, 339: 127775.
HAO X L, PAN X H, GAO Y, et al. Facile synthesis of nitrogen-doped green-emission carbon dots as fluorescent off-on probes for the highly selective sensing mercury and iodine ions [J]. J. Nanosci. Nanotechnol., 2020, 20 (4): 2045-2054.
YANG X C, LI Q L, TANG M, et al. One stone, two birds: pH- and temperature-sensitive nitrogen-doped carbon dots for multiple anticounterfeiting and multiple cell imaging [J]. ACS Appl. Mater. Interfaces, 2020, 12 (18): 20849-20858.
0
Views
278
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution