浏览全部资源
扫码关注微信
1.中国科学院合肥物质科学研究院安徽光学精密机械研究所 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
2.先进激光技术安徽省实验室, 安徽 合肥 230031
3.中国科学技术大学, 安徽 合肥 230026
4.安徽工业大学 数理科学与工程学院, 安徽 马鞍山 243002
Published:05 November 2022,
Received:24 June 2022,
Revised:03 July 2022,
移动端阅览
李加红,张庆礼,孙贵花等.Yb∶GdScO3晶体光谱参数计算[J].发光学报,2022,43(11):1779-1788.
LI Jia-hong,ZHANG Qing-li,SUN Gui-hua,et al.Spectral Parameter Computation of Yb∶GdScO3 Crystal[J].Chinese Journal of Luminescence,2022,43(11):1779-1788.
李加红,张庆礼,孙贵花等.Yb∶GdScO3晶体光谱参数计算[J].发光学报,2022,43(11):1779-1788. DOI: 10.37188/CJL.20220249.
LI Jia-hong,ZHANG Qing-li,SUN Gui-hua,et al.Spectral Parameter Computation of Yb∶GdScO3 Crystal[J].Chinese Journal of Luminescence,2022,43(11):1779-1788. DOI: 10.37188/CJL.20220249.
采用提拉法生长了质量优良的Yb∶GdScO
3
晶体,对样品的X射线粉末衍射进行了Rietveld精修,给出了晶体计算密度及掺杂浓度。Yb
3+
的有效分凝系数计算为1.04。室温下测量了其吸收光谱、发射光谱和荧光寿命,首次计算了GdScO
3
基质中Yb
3+
的吸收、发射振子强度、谱线强度、跃迁概率、能级寿命和积分发射截面等重要光谱参数,对其激光性能进行了初步评估。结果表明,Yb∶GdScO
3
易于输出1 030 nm和1 060 nm波段附近的激光,而对于1 000 nm附近的激光输出则只有在高粒子数反转情况下才可能实现。
A high quality Yb∶GdScO
3
crystal was grown by Czochralski method. The X-ray diffraction was refined by Rietveld method, and the calculated crystal density and doping concentration were obtained. The effective segregation coefficient of Yb
3+
is calculated to be 1.04.Its absorption spectrum, emission spectrum and fluorescence lifetime were measured at room temperature. The absorption, emission oscillator strength, spectral line strength, transition probability, energy level lifetime and integral emission cross section of Yb
3+
in GdScO
3
matrix were calculated for the first time. The laser performance is preliminarily evaluated. The results show that Yb∶GdScO
3
is easy to output laser near 1 030 nm and 1 060 nm, while the laser output near 1 000 nm is only possible under the condition of high population inversion.
Yb∶GdScO3吸收光谱发射光谱光跃迁
Yb∶GdScO3absorption spectrumemission spectrumoptical transition
HOU W T, ZHAO H Y, QIN Z P, et al. Spectroscopic and continuous-wave laser properties of Er∶GdScO3 crystal at 2.7 µm [J]. Opt. Mater. Express, 2020, 10(11): 2730-2737. doi: 10.1364/ome.405683http://dx.doi.org/10.1364/ome.405683
AMANYAN S N, ARSEN'EV P A, BAGDASAROV K S, et al. Synthesis and examination of GdScO3 single crystals activated by Nd3+ [J]. J. Appl. Spectrosc., 1983, 38(3): 343-348. doi: 10.1007/bf00659891http://dx.doi.org/10.1007/bf00659891
LI S M, FANG Q N, ZHANG Y H, et al. 2 μm Ultrabroad spectra and laser operation of Tm∶GdScO3 crystal [J]. Opt. Laser Technol., 2021, 143: 107345-1-6. doi: 10.1016/j.optlastec.2021.107345http://dx.doi.org/10.1016/j.optlastec.2021.107345
PENG F, LIU W P, LUO J Q, et al. Study of growth, defects and thermal and spectroscopic properties of Dy∶GdScO3 and Dy, Tb∶GdScO3 as promising 578 nm laser crystals [J]. CrystEngComm, 2018, 20(40): 6291-6299. doi: 10.1039/c8ce01254ghttp://dx.doi.org/10.1039/c8ce01254g
YAMAJI A, KOCHURIKHIN V, FUJIMOTO Y, et al. Optical properties and radiation response of Ce3+-doped GdScO3 crystals [J]. Phys. Status Solidi (c), 2012, 9(12): 2267-2270. doi: 10.1002/pssc.201200333http://dx.doi.org/10.1002/pssc.201200333
P N R S, PANDA D P, SUNDARESAN A. Switchable and nonswitchable polarization in doubly ordered perovskites NaLnCoWO6 (Ln = Er, Tm, Yb, and Lu) [J]. J. Phys. Chem. C, 2021, 125(19): 10803-10809. doi: 10.1021/acs.jpcc.1c02316http://dx.doi.org/10.1021/acs.jpcc.1c02316
赵亚洁, 盛贵章, 郑捷元, 等. 铜基钙钛矿材料及其研究进展 [J]. 新能源进展, 2022, 10(3): 233-243. doi: 10.3969/j.issn.2095-560X.2022.03.007http://dx.doi.org/10.3969/j.issn.2095-560X.2022.03.007
ZHAO Y J, SHENG G Z, ZHENG J Y, et al. Research progress on copper-based perovskite materials [J]. Adv. New Renew. Energy, 2022, 10(3): 233-243. (in Chinese). doi: 10.3969/j.issn.2095-560X.2022.03.007http://dx.doi.org/10.3969/j.issn.2095-560X.2022.03.007
MANSLEY Z R, MIZZI C A, KOIRALA P, et al. Structure of the (110) LnScO3 (Ln=Gd, Tb, Dy) surfaces [J]. Phys. Rev. Mater., 2020, 4(4): 045003-1-6. doi: 10.1103/physrevmaterials.4.045003http://dx.doi.org/10.1103/physrevmaterials.4.045003
SHENG J M, KAN X C, GE H, et al. Low temperature magnetism in the rare-earth perovskite GdScO3 [J]. Chin. Phys. B, 2020, 29(5): 057503-1-5. doi: 10.1088/1674-1056/ab8200http://dx.doi.org/10.1088/1674-1056/ab8200
WANG D H, HOU W T, LI N, et al. Growth, spectroscopic properties and crystal field analysis of Cr3+ doped GdScO3 crystal [J]. Opt. Mater. Express, 2019, 9(11): 4218-4227. doi: 10.1364/ome.9.004218http://dx.doi.org/10.1364/ome.9.004218
周慧丽, 吴锋, 张志宏, 等. Lu2O3∶Er3+/Yb3+荧光材料的上转换发光及其温度传感特性 [J]. 发光学报, 2022, 43(2): 192-200. doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
ZHOU H L, WU F, ZHANG Z H, et al. Upconversion luminescence and temperature sensing characteristics of Lu2O3∶Er3+/Yb3+ phosphor [J]. Chin. J. Lumin., 2022, 43(2): 192-200. (in Chinese). doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
张志宏, 周慧丽, 吴锋, 等. Tm3+/Yb3+共掺LuYO3上转换荧光温度传感特性 [J]. 发光学报, 2021, 42(12): 1872-1881. doi: 10.37188/cjl.20210276http://dx.doi.org/10.37188/cjl.20210276
ZHANG Z H, ZHOU H L, WU F, et al. Temperature sensing characteristics of up-conversion luminescence in Tm3+/Yb3+ Co-doped LuYO3 phosphor [J]. Chin. J. Lumin., 2021, 42(12): 1872-1881. (in Chinese). doi: 10.37188/cjl.20210276http://dx.doi.org/10.37188/cjl.20210276
JIA J H, KE Y J, ZHANG X X, et al. Giant magnetocaloric effect in the antiferromagnet GdScO3 single crystal [J]. J. Alloys Compd., 2019, 803: 992-997. doi: 10.1016/j.jallcom.2019.06.361http://dx.doi.org/10.1016/j.jallcom.2019.06.361
YAN W L, SUN Y J, WANG Z Y, et al. Growth and spectroscopic analyses of Yb, Ho∶CaYAlO4 disordered crystal for ~3 μm mid-infrared laser [J]. J. Lumin., 2021, 236: 118067.
WANG X L, WANG X J, DONG J. Sub-nanosecond, high peak power Yb∶YAG/Cr4+∶YAG/YVO4 passively Q-switched Raman micro-laser operating at 1134 nm [J]. J. Lumin., 2021, 234: 117955. doi: 10.1016/j.jlumin.2021.117955http://dx.doi.org/10.1016/j.jlumin.2021.117955
LIANG H Z, LEI W C, LIU S X, et al. Color tunable up-conversion luminescence characteristics of Yb3+-Er3+-Tm3+ tri-doped fluorosilicate glass potentially used in WLED field [J]. Opt. Mater., 2021, 119: 111320-1-8. doi: 10.1016/j.optmat.2021.111320http://dx.doi.org/10.1016/j.optmat.2021.111320
WANG H, PANG T, TIAN Y, et al. Brightness attenuation mechanisms of Er3+ self-sensitized upconversion nanocrystals under 1.5 μm pumping [J]. Appl. Surf. Sci., 2021, 538: 148084-1-9. doi: 10.1016/j.apsusc.2020.148084http://dx.doi.org/10.1016/j.apsusc.2020.148084
DAI Y, ZHANG Z H, SU L B, et al. Growth of high-quality Yb3+-doped Y3Al5O12 single crystal fiber by laser heated pedestal growth method [J]. J. Inorg. Mater., 2021, 36(7): 761-765. doi: 10.15541/jim20200475http://dx.doi.org/10.15541/jim20200475
邬金闽, 黄得财, 梁思思, 等. Cr3+、Yb3+共掺杂LaSc3(BO3)4近红外荧光粉的发光与器件性能 [J]. 发光学报, 2021, 42(6): 793-803. doi: 10.37188/CJL.20210066http://dx.doi.org/10.37188/CJL.20210066
WU J M, HUANG D C, LIANG S S, et al. Photoluminescence properties and device performance of Cr3+, Yb3+ co-doped LaSc3(BO3)4 near infrared phosphors [J]. Chin. J. Lumin., 2021, 42(6): 793-803. (in Chinese). doi: 10.37188/CJL.20210066http://dx.doi.org/10.37188/CJL.20210066
LENGYEL K, TICHY-RÁCS É, TIMPMANN K, et al. Cooperative luminescence of Yb3+ ion pairs in Li6Y(BO3)3∶Yb single crystals [J]. J. Lumin., 2021, 230: 117732-1-9.
PAUL DAVID S, JAMBUNATHAN V, YUE F X, et al. Diode pumped cryogenic Yb∶Lu3Al5O12 laser in continuous-wave and pulsed regime [J]. Opt. Laser Technol., 2021, 135: 106720.
PETROV V A, PETROV V V, KUPTSOV G V, et al. YAG∶Yb crystal with non-linear doping ions distribution as promising active element for high average power laser systems [J]. Laser Phys., 2021, 31(3): 035003-1-6. doi: 10.1088/1555-6611/abe235http://dx.doi.org/10.1088/1555-6611/abe235
金叶, 李坤, 罗旭, 等. Sc2(WO4)3∶Er3+/Yb3+的上转换发光及其温度传感特性 [J]. 发光学报, 2021, 42(1): 91-97. doi: 10.37188/cjl.20200326http://dx.doi.org/10.37188/cjl.20200326
JIN Y, LI K, LUO X, et al. Upconversion luminescence and temperature sensing properties for Sc2(WO4)3∶Er3+/Yb3+ [J]. Chin. J. Lumin., 2021, 42(1): 91-97. (in Chinese). doi: 10.37188/cjl.20200326http://dx.doi.org/10.37188/cjl.20200326
何旭, 吴亚楠, 蒋越宁, 等. 适用于近红外荧光/核磁双模成像的GdF3∶Nd3+,Yb3+@NaGdF4纳米材料 [J]. 发光学报, 2022, 43(3): 350-358. doi: 10.37188/cjl.20210391http://dx.doi.org/10.37188/cjl.20210391
HE X, WU Y N, JIANG Y N, et al. GdF3∶Nd3+,Yb3+@NaGdF4 nanomaterials for near infrared fluorescence and magnetic resonance dual-mode imaging [J]. Chin. J. Lumin., 2022, 43(3): 350-358. (in Chinese). doi: 10.37188/cjl.20210391http://dx.doi.org/10.37188/cjl.20210391
杨洁, 赵建斌, 刘乂尹, 等. 镱钠共掺氟化钙锶混晶近红外光谱与激光参数 [J]. 发光学报, 2022, 43(3): 341-349. doi: 10.37188/cjl.20210358http://dx.doi.org/10.37188/cjl.20210358
YANG J, ZHAO J B, LIU Y Y, et al. Near-infrared spectra and laser parameters of Yb3+ and Na+ codoped CaF2-SrF2 crystal [J]. Chin. J. Lumin., 2022, 43(3): 341-349. (in Chinese). doi: 10.37188/cjl.20210358http://dx.doi.org/10.37188/cjl.20210358
宁凯杰, 张庆礼, 周鹏宇, 等. Yb3+∶Gd2SiO5晶体的结构和光谱性能 [J]. 物理学报, 2012, 61(12): 128102-1-8. doi: 10.7498/aps.61.128102http://dx.doi.org/10.7498/aps.61.128102
NING K J, ZHANG Q L, ZHOU P Y, et al. Structure and spectral properties of Yb3+∶Gd2SiO5 crystal [J]. Acta Phys. Sinica, 2012, 61(12): 128102-1-8. (in Chinese). doi: 10.7498/aps.61.128102http://dx.doi.org/10.7498/aps.61.128102
STEPHEN S K, VARGHESE T. Effect of Yb3+ substitution on the structural and optical properties of Ba1-xYbxWO4 nanoparticles-NIR luminescence emissions for optical communication and bioanalyses [J]. Mater. Charact., 2021, 174: 110985. doi: 10.1016/j.matchar.2021.110985http://dx.doi.org/10.1016/j.matchar.2021.110985
WANG W, JIANG B X, FENG T, et al. Broadening emission band of Yb∶LuScO3 transparent ceramics for ultrashort pulse laser [J]. J. Am. Ceram Soc., 2021, 104(11): 6064-6073.
LIU Z Y, TOCI G, PIRRI A, et al. Fabrication, microstructures, and optical properties of Yb∶Lu2O3 laser ceramics from co-precipitated nano-powders [J]. J. Adv. Ceram., 2020, 9(6): 674-682. doi: 10.1007/s40145-020-0403-8http://dx.doi.org/10.1007/s40145-020-0403-8
SOHARAB M, BHAUMIK I, BHATT R, et al. Investigation of optical and spectroscopic properties of Nd co-doped Yb∶YVO4 single crystals grown by OFZ method [J]. J. Lumin., 2021, 231: 117736.
MA J, YANG F, GAO W L, et al. Sub-five-optical-cycle pulse generation from a Kerr-lens mode-locked Yb∶CaYAlO4 laser [J]. Opt. Lett., 2021, 46(10): 2328-2331.
DEMIRBAS U, KELLERT M, THESINGA J, et al. Comparative investigation of lasing and amplification performance in cryogenic Yb∶YLF systems [J]. Appl. Phys. B, 2021, 127(3): 46-1-10.
CHEN J X, DONG L, LIU F F, et al. Investigation of Yb∶CaWO4 as a potential new self-Raman laser crystal [J]. Cryst‐EngComm, 2021, 23(2): 427-435.
ZHAO Y Q, WANG Q G, MENG L H, et al. Anisotropy of the thermal and laser output properties in Yb, Nd∶Sc2SiO5 crystal [J]. Chin. Opt. Lett., 2021, 19(4): 041405-1-5.
VOLOKITINA A, DAVID S P, LOIKO P, et al. Monoclinic zinc monotungstate Yb3+, Li+∶ZnWO4∶ Part Ⅱ. Polarized spectroscopy and laser operation [J]. J. Lumin., 2021, 231: 117811.
JIANG B B, ZHENG L H, JIANG D P, et al. Growth and optical properties of ytterbium and rare earth ions codoped CaF2-SrF2 eutectic solid-solution (RE = Y3+, Gd3+, La3+) [J]. J. Rare Earths, 2021, 39(4): 390-397. doi: 10.1016/j.jre.2020.08.001http://dx.doi.org/10.1016/j.jre.2020.08.001
BASYROVA L, LOIKO P, MAKSIMOV R, et al. Comparative study of Yb∶Lu3Al5O12 and Yb∶Lu2O3 laser ceramics produced from laser-ablated nanopowders [J]. Ceram. Int., 2021, 47(5): 6633-6642.
李加红, 孙贵花, 张庆礼, 等. 退火气氛对GdScO3和Yb∶GdScO3晶体的结构和光谱性质的影响 [J]. 物理学报, 2022, 71(16): 164206-1-7. doi: 10.7498/aps.71.20220196http://dx.doi.org/10.7498/aps.71.20220196
LI J H, SUN G H, ZHANG Q L, et al. Effect of annealing atmosphere on the structure and spectral properties of GdScO3 and Yb∶GdScO3 crystals [J]. Acta Phys. Sinica, 2022, 71(16): 164206-1-7. (in Chinese). doi: 10.7498/aps.71.20220196http://dx.doi.org/10.7498/aps.71.20220196
WANG A Y, ZHANG J, YE S, et al. Optimized growth and laser application of Yb∶LuAG single-crystal fibers by micro-pulling-down technique [J]. Crystals, 2021, 11(2): 78-1-10.
PAN Y X, LIN H, LIU J, et al. Fabrication and spectral properties of Yb, Ho∶Y2O3 transparent ceramics [J]. Opt. Mater., 2021, 112: 110479-1-6.
ZENG H J, LIN H F, LIN Z L, et al. Diode-pumped sub-50-fs Kerr-lens mode-locked Yb∶GdYCOB laser [J]. Opt. Express, 2021, 29(9): 13496-13503.
ÁLVAREZ-PÉREZ J O, CANO-TORRES J M, RUIZ A, et al. A roadmap for laser optimization of Yb∶Ca3(NbGa)5O12-CNGG-type single crystal garnets [J]. J. Mater. Chem. C, 2021, 9(13): 4628-4642.
相国涛, 杨梦琳, 刘臻, 等. NaScF4∶Yb3+/Er3+纳米颗粒荧光温敏特性 [J]. 发光学报, 2022, 43(5): 684-690. doi: 10.37188/cjl.20220064http://dx.doi.org/10.37188/cjl.20220064
XIANG G T, YANG M L, LIU Z, et al. Temperature sensing properties in NaScF4∶Yb3+/Er3+ nanoparticles [J]. Chin. J. Lumin., 2022, 43(5): 684-690. (in Chinese). doi: 10.37188/cjl.20220064http://dx.doi.org/10.37188/cjl.20220064
刘翠翠, 林楠, 马骁宇, 等. 带有非吸收窗口的高性能InGaAs/AlGaAs量子阱激光二极管 [J]. 发光学报, 2022, 43(1): 110-118. doi: 10.37188/cjl.20210306http://dx.doi.org/10.37188/cjl.20210306
LIU C C, LIN N, MA X Y, et al. High performance InGaAs/AlGaAs quantum well semiconductor laser diode with non-absorption window [J]. Chin. J. Lumin., 2022, 43(1): 110-118. (in Chinese). doi: 10.37188/cjl.20210306http://dx.doi.org/10.37188/cjl.20210306
ZHANG Y H, LI S M, DU X, et al. Yb∶GdScO3 crystal for efficient ultrashort pulse lasers [J]. Opt. Lett., 2021, 46(15): 3641-3644. doi: 10.1364/ol.431243http://dx.doi.org/10.1364/ol.431243
GUPTA S K, GROVER V, SHUKLA R, et al. Exploring pure and RE co-doped (Eu3+, Tb3+ and Dy3+) gadolinium scandate: luminescence behaviour and dynamics of energy transfer [J]. Chem. Eng. J., 2016, 283: 114-126. doi: 10.1016/j.cej.2015.07.043http://dx.doi.org/10.1016/j.cej.2015.07.043
CHENEBUAH E T, NGANBE M, TCHAGANG A B. Comparative analysis of machine learning approaches on the prediction of the electronic properties of perovskites: a case study of ABX3 and A2BB′X6 [J]. Mater. Today Commun., 2021, 27: 102462.
RIETVELD H M. A profile refinement method for nuclear and magnetic structures [J]. J. Appl. Cryst., 1969, 2(2): 65-71. doi: 10.1107/s0021889869006558http://dx.doi.org/10.1107/s0021889869006558
RIETVELD H M. Line profiles of neutron powder-diffraction peaks for structure refinement [J]. Acta Cryst., 1967, 22(1): 151-152. doi: 10.1107/s0365110x67000234http://dx.doi.org/10.1107/s0365110x67000234
柳欢, 高薪羽, 白杰, 等. 钙钛矿氧化物ABO3的结构调控与电催化性能研究进展 [J]. 应用化工, 2021, 50(12): 3498-3503. doi: 10.3969/j.issn.1671-3206.2021.12.056http://dx.doi.org/10.3969/j.issn.1671-3206.2021.12.056
LIU H, GAO X Y, BAI J, et al. Advances in structural regulation and electrocatalytic properties of ABO3 perovskite oxides [J] Appl. Chem. Ind., 2021, 50(12): 3498-3503. (in Chinese). doi: 10.3969/j.issn.1671-3206.2021.12.056http://dx.doi.org/10.3969/j.issn.1671-3206.2021.12.056
杨洁, 皮明雨, 张丁可, 等. 低维钙钛矿光电探测器研究进展 [J]. 发光学报, 2021, 42(6): 755-773. doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
YANG J, PI M Y, ZHANG D K, et al. Recent progress on low-dimensional perovskite photodetectors [J]. Chin. J. Lumin., 2021, 42(6): 755-773. (in Chinese). doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
周港杰, 胡艺萱, 谭林玲, 等. 碲掺杂钙⁃铝⁃锗酸盐玻璃宽带近红外发光及其调控机理 [J]. 发光学报, 2022, 43(1): 51-57. doi: 10.37188/cjl.20210337http://dx.doi.org/10.37188/cjl.20210337
ZHOU G J, HU Y X, TAN L L, et al. Broadband near-infrared luminescence and regulation mechanism of tellurium-doped calcium-aluminum-germanate glass [J]. Chin. J. Lumin., 2022, 43(1): 51-57. (in Chinese). doi: 10.37188/cjl.20210337http://dx.doi.org/10.37188/cjl.20210337
杨立群, 马晓辉, 郑士建, 等. 柔性钙钛矿太阳能电池中电极材料和电荷传输材料的研究进展 [J]. 发光学报, 2020, 41(10): 1175-1194. doi: 10.37188/CJL.20200192http://dx.doi.org/10.37188/CJL.20200192
YANG L Q, MA X H, ZHENG S J, et al. Research progress on electrode materials and charge transport materials in flexible perovskite solar cells [J]. Chin. J. Lumin., 2020, 41(10): 1175-1194. (in Chinese). doi: 10.37188/CJL.20200192http://dx.doi.org/10.37188/CJL.20200192
胡强, 白雪, 宋宏伟, 等. 稀土离子掺杂钙钛矿纳米晶的光学性质和应用 [J]. 发光学报, 2022, 43(1): 8-25. doi: 10.37188/CJL.20210330http://dx.doi.org/10.37188/CJL.20210330
HU Q, BAI X, SONG H W, et al. Rare earth ion doped perovskite nanocrystals [J]. Chin. J. Lumin., 2022, 43(1): 8-25. (in Chinese). doi: 10.37188/CJL.20210330http://dx.doi.org/10.37188/CJL.20210330
时秋峰, 王磊, 郭海洁, 等. 真空紫外光及X射线激发下Pr3+掺杂Ba3La(PO4)3发光性质 [J]. 发光学报, 2021, 42(11): 1756-1762. doi: 10.37188/CJL.20210281http://dx.doi.org/10.37188/CJL.20210281
SHI Q F, WANG L, GUO H J, et al. Luminescence properties of Pr3+ doped in Ba3La(PO4)3 with vacuum ultraviolet and X-ray excitation [J]. Chin. J. Lumin., 2021, 42(11): 1756-1762. (in Chinese). doi: 10.37188/CJL.20210281http://dx.doi.org/10.37188/CJL.20210281
张思远. 稀土离子的光谱学 [M]. 北京: 科学出版社, 2008.
ZHANG S Y. Spectroscopy of Rare Earth Ions [M]. Beijing: Science Press, 2008. (in Chinese)
张庆礼, 肖敬忠, 孙敦陆, 等. Yb∶YAG的晶体生长和光谱参数计算 [J]. 光谱学与光谱学分析, 2004, 24(10): 1157-1160.
ZHANG Q L, XIAO J Z, SUN D L, et al. Crystal growth and spectral parameter computation of Yb∶YAG [J]. Spectrosc. Spectral Anal., 2004, 24(10): 1157-1160. (in Chinese)
徐军, 徐晓东, 苏良碧. 掺镱激光晶体材料 [M]. 上海: 上海科学普及出版社, 2005.
XU J, XU X D, SU L B. Ytterbium‐doped Laser Crystal Materials [M]. Shanghai: Shanghai Science Popularization Press, 2005. (in Chinese)
ZHANG Q L, SUN G, GAO J Y, et al. Profile function properties & optical transition formulae [J]. Chin. Phys. B, 2017, 26(7): 077803-1-5. doi: 10.1088/1674-1056/26/7/077803http://dx.doi.org/10.1088/1674-1056/26/7/077803
0
Views
363
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution