浏览全部资源
扫码关注微信
吉林大学 物理学院, 吉林 长春 130012
Published:05 October 2022,
Received:16 June 2022,
Revised:05 July 2022,
移动端阅览
战胜,刘佳田,张汉壮等.基于无机电荷产生层的量子点电致发光器件[J].发光学报,2022,43(10):1469-147710.37188/CJL.20220240.
ZHAN Sheng,LIU Jia-tian,ZHANG Han-zhuang,et al.Quantum-dot Light-emitting Diodes Based on Inorganic Charge-generation Layer[J].Chinese Journal of Luminescence,2022,43(10):1469-147710.37188/CJL.20220240.
利用WO
3
/ZnO作为电荷产生层(CGL)制备了具有倒置结构的量子点电致发光器件(QLED),相比于传统的基于单层ZnO作为电子传输层的QLED,利用CGL‐QLED的电流效率提高了近30%。这主要归因于CGL的电子注入具有电场依赖特性,从而使得器件中的电荷注入更加平衡,提高了激子的形成效率,抑制了载流子导致的猝灭过程。此外,我们通过瞬态电致发光光谱技术及电容特性测试,分析了基于CGL的QLED的器件工作机制,发现CGL中可以存储大量的载流子,从而使得器件在脉冲电压驱动时出现发光过冲现象。其环境稳定性也与常规的基于ZnO的器件一致。而由于CGL独特的电荷产生机制,使得其不依赖于电极功函数特性。我们相信,这种器件结构在改善器件稳定性及良率方面有着巨大潜力。
Quantum-dot light-emitting diodes(QLEDs)are fabricated by employing an inorganic charge-generation layer(CGL) consisting of WO
3
/ZnO instead of commonly used ZnO electron-transport layer. The performance of CGL based QLED is increased by around 30% compared with the device with ZnO as the electron-transport layer, which is attributed to the electrical field-dependent charge injection of CGL, resulting in more balanced charge injection and efficient exciton formation. Moreover, the emission quenching processes induced by charges are also reduced. The working mechanism of CGL based QLEDs is unraveled by transient electroluminescence spectrum and capacitance measurements. We find that the CGL can act as a charge reservoir, which is the origin of electroluminescence overshoot at the rising edge of transient electroluminescence response. Additionally, the shelf lifetime of CGL-QLEDs is identical with or even better than the normal ZnO based devices. Considering the charge injection of CGL is independent on the work function of electrodes, we believe the device structure proposed in this work has great potential to improve device stability and yield.
量子点发光器件电荷产生层过冲电荷存储
quantum-dot light-emitting diodescharge-generation layerovershootcharge storage
ROSSETTI R, NAKAHARA S, BRUS L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution [J]. J. Chem. Phys., 1983, 79(2): 1086-1088. doi: 10.1063/1.445834http://dx.doi.org/10.1063/1.445834
MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715. doi: 10.1021/ja00072a025http://dx.doi.org/10.1021/ja00072a025
PATHAK S, CHOI S K, ARNHEIM N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization [J]. J. Am. Chem. Soc., 2001, 123(17): 4103-4104. doi: 10.1021/ja0058334http://dx.doi.org/10.1021/ja0058334
BRUCHEZ JR M, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385): 2013-2016. doi: 10.1126/science.281.5385.2013http://dx.doi.org/10.1126/science.281.5385.2013
DU J, DU Z L, HU J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6% [J]. J. Am. Chem. Soc., 2016, 138(12): 4201-4209. doi: 10.1021/jacs.6b00615http://dx.doi.org/10.1021/jacs.6b00615
SUKHOVATKIN V, HINDS S, BRZOZOWSKI L, et al. Colloidal quantum-dot photodetectors exploiting multiexciton generation [J]. Science, 2009, 324(5934): 1542-1544. doi: 10.1126/science.1173812http://dx.doi.org/10.1126/science.1173812
COE S, WOO W K, BAWENDI M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002, 420(6917): 800-803. doi: 10.1038/nature01217http://dx.doi.org/10.1038/nature01217
SUN Q J, WANG Y A, LI L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots [J]. Nat. Photonics, 2007, 1(12): 717-722. doi: 10.1038/nphoton.2007.226http://dx.doi.org/10.1038/nphoton.2007.226
熊雪莹, 魏昌庭, 苏文明, 等. 喷墨打印镉基绿光量子点发光二极管及其界面 [J]. 发光学报, 2019, 40(10): 1274-1280. doi: 10.3788/fgxb20194010.1274http://dx.doi.org/10.3788/fgxb20194010.1274
XIONG X Y, WEI C T, SU W M, et al. Performance and interface of inkjet-printed cadmium(Cd)-based green quantum dot light-emitting diodes [J]. Chin. J. Lumin., 2019, 40(10): 1274-1280. (in Chinese). doi: 10.3788/fgxb20194010.1274http://dx.doi.org/10.3788/fgxb20194010.1274
WANG X B, YAN X S, LI W W, et al. Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors [J]. Adv. Mater., 2012, 24(20): 2742-2747. doi: 10.1002/adma.201104861http://dx.doi.org/10.1002/adma.201104861
SONG J J, WANG O Y, SHEN H B, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer [J]. Adv. Funct. Mater., 2019, 29(33): 1808377-1-9. doi: 10.1002/adfm.201808377http://dx.doi.org/10.1002/adfm.201808377
LI X Y, LIN Q L, SONG J J, et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness [J]. Adv. Opt. Mater., 2020, 8(2): 1901145-1-9. doi: 10.1002/adom.201901145http://dx.doi.org/10.1002/adom.201901145
KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode [J]. Nature, 2020, 586(7829): 385-389. doi: 10.1038/s41586-020-2791-xhttp://dx.doi.org/10.1038/s41586-020-2791-x
WANG R J, WANG T, KANG Z H, et al. Efficient flexible quantum-dot light-emitting diodes with unipolar charge injection [J]. Opt. Express, 2022, 30(9): 15747-15756. doi: 10.1364/oe.456449http://dx.doi.org/10.1364/oe.456449
KIM H M, KIM J, LEE J, et al. Inverted quantum-dot light emitting diode using solution processed p-type WOx doped PEDOT∶PSS and Li doped ZnO charge generation layer [J]. ACS Appl. Mater. Interfaces, 2015, 7(44): 24592-24600. doi: 10.1021/acsami.5b06505http://dx.doi.org/10.1021/acsami.5b06505
PENG J Y, YUAN Q L, XUE X L, et al. Improving the voltage tolerance of perovskite light-emitting diodes via a charge-generation layer [J]. Opt. Lett., 2022, 47(10): 2462-2465. doi: 10.1364/ol.458685http://dx.doi.org/10.1364/ol.458685
JING P T, JI W Y, ZENG Q H, et al. Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode [J]. Sci. Rep., 2015, 5: 12499-1-8. doi: 10.1038/srep12499http://dx.doi.org/10.1038/srep12499
DENG Y Z, LIN X, FANG W, et al. Deciphering exciton-generation processes in quantum-dot electroluminescence [J]. Nat. Commun., 2020, 11(1): 2309-1-8. doi: 10.1038/s41467-020-15944-zhttp://dx.doi.org/10.1038/s41467-020-15944-z
SHAO Z W, HUANG A B, MING C, et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices [J]. Nat. Electron., 2022, 5(1): 45-52. doi: 10.1038/s41928-021-00697-4http://dx.doi.org/10.1038/s41928-021-00697-4
0
Views
643
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution