浏览全部资源
扫码关注微信
1.福州大学 物理与信息工程学院, 福建 福州 350116
2.中国福建光电信息科学与技术创新实验室, 福建 福州 350108
Published:05 October 2022,
Received:14 June 2022,
Revised:04 July 2022,
扫 描 看 全 文
许海龙,陈孔杰,陈培崎等.无电学接触型氮化镓基Micro⁃LED器件光电性能[J].发光学报,2022,43(10):1592-160010.37188/CJL.20220237.
XU Hai-long,CHEN Kong-jie,CHEN Pei-qi,et al.Photoelectric Characteristics of Non-electric Contact GaN-based Micro-LED Device[J].Chinese Journal of Luminescence,2022,43(10):1592-160010.37188/CJL.20220237.
许海龙,陈孔杰,陈培崎等.无电学接触型氮化镓基Micro⁃LED器件光电性能[J].发光学报,2022,43(10):1592-160010.37188/CJL.20220237. DOI:
XU Hai-long,CHEN Kong-jie,CHEN Pei-qi,et al.Photoelectric Characteristics of Non-electric Contact GaN-based Micro-LED Device[J].Chinese Journal of Luminescence,2022,43(10):1592-160010.37188/CJL.20220237. DOI:
针对传统Micro⁃LED芯片巨量转移与键合、发光芯片与驱动电极高质量接触等技术难题,本文采用金属有机化合物化学气相沉积和原子层沉积工艺制备无电学接触型氮化镓基Micro⁃LED器件,研究了器件的伏安特性、亮度‑频率特性、发光延迟特性及阻抗‑频率特性等光电特性,并分析了器件工作机理。实验结果表明,交流驱动的无电学接触型Micro⁃LED器件的电流随着频率的增大而增大,且
I
⁃
V
特性呈线性关系。在20
V
pp
的驱动信号下,器件亮度随频率的增大先上升后下降,在频率为25 MHz时,器件亮度达到最大,且发光峰值滞后于电流峰值,说明器件的发光存在延迟。器件的等效阻抗随着频率的增大呈现先减小后趋于稳定的趋势,且器件在频率53 MHz附近出现负电容现象。
In this paper, non-electrical contact(NEC) GaN-based Micro-LED devices were prepared by metal organic chemical vapor deposition(MOCVD) and atomic layer deposition(ALD) because a series of problems would emerge, including mass transfer, bonding, and high-quality contact between chips and driving electrodes as the LED chip size is further decreased. We investigated the photoelectric characteristics of NEC Micro-LED devices, such as the current-voltage(
I
-
V
), luminance-frequency(
L
-
F
), luminescence delay and impedance-frequency(
I
-
F
) characteristics, and the working mechanism of the device is also analyzed. These experimental results indicate that the current of the NEC Micro-LED device increases with the increase of the frequency and
I
-
V
curves have linear relationships under the role of the alternating-current drive. At the driving signal of 20
V
pp
, the luminances of the NEC Micro-LED device first increase and then fall with the gradual increases of the frequencies. When the frequency is 25 MHz, the luminance of NEC Micro-LED device reaches to be the maximum. Moreover, the luminescence peak lags behind the current peak, indicating that the luminescence of the device is delayed. Besides, the equivalent impedance of the NEC Micro-LED device decreases and finally tends to be stable with the increases of the frequencies and the device shows the negative capacitance phenomenon around the frequency of 53 MHz.
Micro-LED器件氮化镓无电学接触交流驱动光电特性
Micro-LED deviceGaNnon-electrical contactalternating-current drivephotoelectric characteristics
CHEN C J, CHEN H C, LIAO J H, et al. Fabrication and characterization of active-matrix 960×540 blue GaN-based micro-LED display [J]. IEEE J. Quantum Electron., 2019, 55(2): 3300106-1-6. doi: 10.1109/jqe.2019.2900540http://dx.doi.org/10.1109/jqe.2019.2900540
严子雯, 严群, 李典伦, 等. 高度集成的μLED显示技术研究进展 [J]. 发光学报, 2020, 41(10): 1309-1317. doi: 10.37188/CJL.20200191http://dx.doi.org/10.37188/CJL.20200191
YAN Z W, YAN Q, LI D L, et al. Research progress of high integration density μLED display technology [J]. Chin. J. Lumin., 2020, 41(10): 1309-1317. (in Chinese). doi: 10.37188/CJL.20200191http://dx.doi.org/10.37188/CJL.20200191
MEI S L, LIU X Y, ZHANG W L, et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication [J]. ACS Appl. Mater. Interfaces, 2018, 10(6): 5641-5648. doi: 10.1021/acsami.7b17810http://dx.doi.org/10.1021/acsami.7b17810
FAN Z Y, LIN J Y, JIANG H X. Ⅲ-nitride micro-emitter arrays: development and applications [J]. J. Phys. D: Appl. Phys., 2008, 41(9): 094001-1-12. doi: 10.1088/0022-3727/41/9/094001http://dx.doi.org/10.1088/0022-3727/41/9/094001
潘祚坚, 陈志忠, 焦飞, 等. 面向显示应用的微米发光二极管外延和芯片关键技术综述 [J]. 物理学报, 2020, 69(19): 198501-1-24. doi: 10.7498/aps.69.20200742http://dx.doi.org/10.7498/aps.69.20200742
PAN Z J, CHEN Z Z, JIAO F, et al. A review of key technologies for epitaxy and chip process of micro light-emitting diodes in display application [J]. Acta Phys. Sinica, 2020, 69(19): 198501-1-24. (in Chinese). doi: 10.7498/aps.69.20200742http://dx.doi.org/10.7498/aps.69.20200742
WU Y F, MA J S, SU P, et al. Full-color realization of micro-LED displays [J]. Nanomaterials, 2020, 10(12): 2482-1-33. doi: 10.3390/nano10122482http://dx.doi.org/10.3390/nano10122482
MCKENDRY J J D, MASSOUBRE D, ZHANG S L, et al. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array [J]. J. Lightwave Technol., 2012, 30(1): 61-67. doi: 10.1109/jlt.2011.2175090http://dx.doi.org/10.1109/jlt.2011.2175090
PATHAK P H, FENG X T, HU P F, et al. Visible light communication, networking, and sensing: a survey, potential and challenges [J]. IEEE Commun. Surv. Tutorials, 2015, 17(4): 2047-2077. doi: 10.1109/comst.2015.2476474http://dx.doi.org/10.1109/comst.2015.2476474
WASISTO H S, PRADES J D, GÜLINK J, et al. Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs [J]. Appl. Phys. Rev., 2019, 6(4): 041315. doi: 10.1063/1.5096322http://dx.doi.org/10.1063/1.5096322
LEE H E, SHIN J H, PARK J H, et al. Micro light-emitting diodes for display and flexible biomedical applications [J]. Adv. Funct. Mater., 2019, 29(24): 1808075-1-14. doi: 10.1002/adfm.201808075http://dx.doi.org/10.1002/adfm.201808075
MICKLE A D, WON S M, NOH K N, et al. A wireless closed-loop system for optogenetic peripheral neuromodulation [J]. Nature, 2019, 565(7739): 361-365. doi: 10.1038/s41586-018-0823-6http://dx.doi.org/10.1038/s41586-018-0823-6
DAY J, LI J, LIE D Y C, et al. Ⅲ-nitride full-scale high-resolution microdisplays [J]. Appl. Phys. Lett., 2011, 99(3): 031116-1-3. doi: 10.1063/1.3615679http://dx.doi.org/10.1063/1.3615679
ZAROWNA-DABROWSKA A, NEALE S L, MASSOUBRE D, et al. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays [J]. Opt. Express, 2011, 19(3): 2720-2728. doi: 10.1364/oe.19.002720http://dx.doi.org/10.1364/oe.19.002720
RASHIDI A, MONAVARIAN M, ARAGON A, et al. High-speed nonpolar InGaN/GaN LEDs for visible-light communication [J]. IEEE Photonics Technol. Lett., 2017, 29(4): 381-384. doi: 10.1109/lpt.2017.2650681http://dx.doi.org/10.1109/lpt.2017.2650681
ZHAO C X, LI W Z, YAN G W, et al. Application of micro-LED in visible light communication [J]. SID Symp. Dig. Tech. Papers, 2020, 51(S1): 117-120. doi: 10.1002/sdtp.13767http://dx.doi.org/10.1002/sdtp.13767
HATADA K, FUJIMOTO H, OCHI T, et al. LED array modules by new technology microbump bonding method [J]. IEEE Trans. Compon., Hybrids, Manuf. Technol., 1990, 13(3): 521-527. doi: 10.1109/33.58854http://dx.doi.org/10.1109/33.58854
WANG S W, HONG K B, TSAI Y L, et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography [J]. Sci. Rep., 2017, 7: 42962-1-7. doi: 10.1038/srep42962http://dx.doi.org/10.1038/srep42962
ANZI L, MANSOURI A, PEDRINAZZI P, et al. Ultra-low contact resistance in graphene devices at the Dirac point [J]. 2D Mater., 2018, 5(2): 025014-1-8. doi: 10.1088/2053-1583/aaab96http://dx.doi.org/10.1088/2053-1583/aaab96
HORNG R H, CHIEN H Y, CHEN K Y, et al. Development and fabrication of AlGaInP-based flip-chip micro-LEDs [J]. IEEE J. Electron Devices Soc., 2018, 6: 475-479. doi: 10.1109/jeds.2018.2823981http://dx.doi.org/10.1109/jeds.2018.2823981
LIU Y B, ZHANG K, HYUN B R, et al. High-brightness InGaN/GaN micro-LEDs with secondary peak effect for displays [J]. IEEE Electron Device Lett., 2020, 41(9): 1380-1383. doi: 10.1109/led.2020.3014435http://dx.doi.org/10.1109/led.2020.3014435
LIU Y, WANG K, WU C X, et al. Triboelectric-nanogenerator-inspired light-emitting diode-in-capacitors for flexible operation in high-voltage and wireless drive modes [J]. Nano Energy, 2020, 78: 105281. doi: 10.1016/j.nanoen.2020.105281http://dx.doi.org/10.1016/j.nanoen.2020.105281
WANG K, CHEN P Q, CHEN J J, et al. Alternating current electroluminescence from GaN-based nanorod light-emitting diodes [J]. Opt. Laser Technol., 2021, 140: 107044-1-7. doi: 10.1016/j.optlastec.2021.107044http://dx.doi.org/10.1016/j.optlastec.2021.107044
WU C X, WANG K, ZHANG Y A, et al. Emerging nanopixel light-emitting displays: significance, challenges, and prospects [J]. J. Phys. Chem. Lett., 2021, 12(14): 3522-3527. doi: 10.1021/acs.jpclett.1c00248http://dx.doi.org/10.1021/acs.jpclett.1c00248
CHEN P Q, WANG K, CHEN J J, et al. Achieving wide operating voltage windows in non-carrier injection micro-LEDs for enhancing luminance robustness [J]. IEEE Trans. Electron Devices, 2022, 69(1): 212-215. doi: 10.1109/ted.2021.3131289http://dx.doi.org/10.1109/ted.2021.3131289
周雄图, 陈桂雄, 孙钒, 等. Al2O3/PMMA交叠薄膜制备及OLED封装性能 [J]. 发光学报, 2021, 42(1): 118-125. doi: 10.37188/CJL.20200325http://dx.doi.org/10.37188/CJL.20200325
ZHOU X T, CHEN G X, SUN F, et al. Fabrication of Al2O3/PMMA laminates and its barrier performance in OLED encapsulation [J]. Chin. J. Lumin., 2021, 42(1): 118-125. (in Chinese). doi: 10.37188/CJL.20200325http://dx.doi.org/10.37188/CJL.20200325
BATRA N, GOPE J, VANDANA, et al. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation [J]. AIP Adv., 2015, 5(6): 067113-1-10. doi: 10.1063/1.4922267http://dx.doi.org/10.1063/1.4922267
仇进. 一次贮备电池的阻抗特性 [J]. 电池, 1997, 27(2): 64-66.
QIU J. The impedance speciality of primary reserve-type cells [J]. Battery Bimon., 1997, 27(2): 64-66. (in Chinese)
曾志斌, 朱传云, 李乐, 等. GaN蓝光发光二极管的负电容现象研究 [J]. 光电子·激光, 2004, 15(4): 402-405.
ZENG Z B, ZHU C Y, LI L, et al. Study of negative capacitance effect of GaN blue LEDs [J]. J. Optoelectron. · Laser, 2004, 15(4): 402-405. (in Chinese)
陈焕庭, 吕毅军, 陈忠, 等. 基于电容和电导特性分析GaN蓝光发光二极管老化机理 [J]. 物理学报, 2009, 58(8): 5700-5704. doi: 10.7498/aps.58.5700http://dx.doi.org/10.7498/aps.58.5700
CHEN H T, LÜ Y J, CHEN Z, et al. Analysis of degradation mechanism of GaN blue light emitting diode by the characteristics of capacitance and conductance [J]. Acta Phys. Sinica, 2009, 58(8): 5700-5704. (in Chinese). doi: 10.7498/aps.58.5700http://dx.doi.org/10.7498/aps.58.5700
WANG K, LIU Y, WU C X, et al. Electroluminescence from μLED without external charge injection [J]. Sci. Rep., 2020, 10(1): 8059-1-8. doi: 10.1038/s41598-020-65092-zhttp://dx.doi.org/10.1038/s41598-020-65092-z
0
Views
238
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution