浏览全部资源
扫码关注微信
1.东华大学 材料科学与工程学院, 纤维材料改性国家重点实验室, 上海 201620
2.安踏(中国)有限公司, 福建 厦门 361000
3.东华大学 材料科学与工程学院, 先进玻璃制造技术教育部工程研究中心, 上海 201620
Published:05 October 2022,
Received:16 June 2022,
Revised:01 July 2022,
移动端阅览
王玥,杨伟峰,陈浩廷等.高性能ZnS∶Cu基力致发光弹性体及其在视觉交互织物中的应用[J].发光学报,2022,43(10):1609-161910.37188/CJL.20220233.
WANG Yue,YANG Wei-feng,CHEN Hao-ting,et al.High-performance ZnS∶Cu Based Mechanoluminescent Elastomers and Their Applications in Visually Interactive Fabrics[J].Chinese Journal of Luminescence,2022,43(10):1609-161910.37188/CJL.20220233.
王玥,杨伟峰,陈浩廷等.高性能ZnS∶Cu基力致发光弹性体及其在视觉交互织物中的应用[J].发光学报,2022,43(10):1609-161910.37188/CJL.20220233. DOI:
WANG Yue,YANG Wei-feng,CHEN Hao-ting,et al.High-performance ZnS∶Cu Based Mechanoluminescent Elastomers and Their Applications in Visually Interactive Fabrics[J].Chinese Journal of Luminescence,2022,43(10):1609-161910.37188/CJL.20220233. DOI:
随着柔性电子领域的不断发展,人们对可穿戴设备的智能化需求逐渐增多。其中,具有视觉交互功能的智能发光纺织品因其应用场景和功能的多样性引起了人们的广泛关注。ZnS∶Cu基力致发光弹性体仅在受到机械应力下就可以实现可见光的发射,具备可循环的力⁃光可视化传感特性,在智能发光服装方面有着潜在的应用价值。本文通过弹性聚合物基体网络结构调控、Al
2
O
3
纳米粒子掺杂的方法来增加应力传递位点,从而提高ZnS∶Cu复合弹性体的发光强度。通过挤出包覆、3D打印、丝网印刷等工艺实现了力致发光智能织物的连续化和图案化制备,改善了力致发光纺织品的力⁃光转换的灵敏度和穿戴舒适性问题,其在可穿戴传感、运动健康监测、智慧交通警示等方面具有潜在的应用价值。
With the rapid development of flexible wearable electronics, the demand for intelligent wearable devices has remarkably increased. Smart luminescent clothing with the ability of visual interaction has attracted wide attention due to its versatile functions. Elastico-mechanoluminescent materials such as ZnS∶Cu mechanoluminescent elastomers have potential applications in smart luminescent cloths/garments because of their repeatable force-to-light visualized sensing capabilities. In this work, we increased the stress transfer sites in ZnS∶Cu mechanoluminescent elastomers through tunning the network structure of the elastic polymer matrix and the doping of Al
2
O
3
nanoparticles, thus improved the luminescence intensity of the mechanoluminescent elastomer. The continuous and patterned preparation of mechanoluminescent textile has also been achieved through extrusion coating, 3D printing, and screen printing mechanoluminescent elastomers on traditional textiles. The sensitivity and wearing comfort of the luminescent woven textiles have therefore been improved, which provides potential value for this mechanoluminescent elastomers in applications including wearable sensing, health monitoring, traffic warning,
etc
.
力致发光弹性体纳米粒子可视化响应发光织物
mechanoluminescenceelastomersnanoparticlesvisualized mechanical sensingluminescent textiles
SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems [J]. Nature, 2021, 591(7849): 240-245. doi: 10.1038/s41586-021-03295-8http://dx.doi.org/10.1038/s41586-021-03295-8
NIU Y, LIU H, HE R Y, et al. The new generation of soft and wearable electronics for health monitoring in varying environment: from normal to extreme conditions [J]. Mater. Today, 2020, 41: 219-242. doi: 10.1016/j.mattod.2020.10.004http://dx.doi.org/10.1016/j.mattod.2020.10.004
CHANDRA B P, CHANDRA V K, JHA P. Microscopic theory of elastico-mechanoluminescent smart materials [J]. Appl. Phys. Lett., 2014, 104(3): 031102-1-5. doi: 10.1063/1.4862655http://dx.doi.org/10.1063/1.4862655
CHANDRA V K, CHANDRA B P, JHA P. Self-recovery of mechanoluminescence in ZnS∶Cu and ZnS∶Mn phosphors by trapping of drifting charge carriers [J]. Appl. Phys. Lett., 2013, 103(16): 161113-1-5. doi: 10.1063/1.4825360http://dx.doi.org/10.1063/1.4825360
WEI X Y, WANG X D, KUANG S Y, et al. Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing [J]. Adv. Mater., 2016, 28(31): 6656-6664. doi: 10.1002/adma.201600604http://dx.doi.org/10.1002/adma.201600604
LUO J J, FAN F R, ZHOU T, et al. Ultrasensitive self-powered pressure sensing system [J]. Extreme Mech. Lett., 2015, 2: 28-36. doi: 10.1016/j.eml.2015.01.008http://dx.doi.org/10.1016/j.eml.2015.01.008
REN Z W, NIE J H, XU L, et al. Directly visualizing tactile perception and ultrasensitive tactile sensors by utilizing body-enhanced induction of ambient electromagnetic waves [J]. Adv. Funct. Mater., 2018, 28(47): 1805277-1-9. doi: 10.1002/adfm.201805277http://dx.doi.org/10.1002/adfm.201805277
XU C N, WATANABE T, AKIYAMA M, et al. Artificial skin to sense mechanical stress by visible light emission [J]. Appl. Phys. Lett., 1999, 74(9): 1236-1238. doi: 10.1063/1.123510http://dx.doi.org/10.1063/1.123510
ZHANG J C, FAN X H, YAN X, et al. Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging [J]. Acta Mater., 2018, 152: 148-154. doi: 10.1016/j.actamat.2018.04.011http://dx.doi.org/10.1016/j.actamat.2018.04.011
田昕, 曹立新, 柳伟, 等. 核壳型ZnS∶Cu/ZnS量子点的制备及发光性质 [J]. 发光学报, 2012, 33(7): 736-741. doi: 10.3788/fgxb20123307.0736http://dx.doi.org/10.3788/fgxb20123307.0736
TIAN X, CAO L X, LIU W, et al. Synthesis and photoluminescent properties of core/shell structure ZnS∶Cu/ZnS quantum dots [J]. Chin. J. Lumin., 2012, 33(7): 736-741. (in Chinese). doi: 10.3788/fgxb20123307.0736http://dx.doi.org/10.3788/fgxb20123307.0736
MA R H, WANG C F, YAN W, et al. Interface synergistic effects induced multi-mode luminescence [J]. Nano Res., 2022, 15(5): 4457-4465. doi: 10.1007/s12274-022-4115-yhttp://dx.doi.org/10.1007/s12274-022-4115-y
ZHAN T Z, XU C N, YAMADA H, et al. Enhancement of impact-induced mechanoluminescence by swift heavy ion irradiation [J]. Appl. Phys. Lett., 2012, 100(1): 014101-1-3. doi: 10.1063/1.3673342http://dx.doi.org/10.1063/1.3673342
MA R H, WEI X Y, WANG C F, et al. Reproducible mechanical-to-optical energy conversion in Mn (Ⅱ) doped sphalerite ZnS [J]. J. Lumin., 2021, 232: 117838-1-6. doi: 10.1016/j.jlumin.2020.117838http://dx.doi.org/10.1016/j.jlumin.2020.117838
PAN C F, CHEN M X, YU R M, et al. Progress in piezo-phototronic-effect-enhanced light-emitting diodes and pressure imaging [J]. Adv. Mater., 2016, 28(8): 1535-1552. doi: 10.1002/adma.201503500http://dx.doi.org/10.1002/adma.201503500
MOON JEONG S, SONG S, LEE S K, et al. Mechanically driven light-generator with high durability [J]. Appl. Phys. Lett., 2013, 102(5): 051110-1-5. doi: 10.1063/1.4791689http://dx.doi.org/10.1063/1.4791689
ZHANG J, BAO L K, LOU H Q, et al. Flexible and stretchable mechanoluminescent fiber and fabric [J]. J. Mater. Chem. C, 2017, 5(32): 8027-8032. doi: 10.1039/c7tc02428bhttp://dx.doi.org/10.1039/c7tc02428b
PARK H J, KIM S, LEE J H, et al. Self-powered motion-driven triboelectric electroluminescence textile system [J]. ACS Appl. Mater. Interfaces, 2019, 11(5): 5200-5207. doi: 10.1021/acsami.8b16023http://dx.doi.org/10.1021/acsami.8b16023
SONG S, SONG B, CHO C H, et al. Textile-fiber-embedded multiluminescent devices: a new approach to soft display systems [J]. Mater. Today, 2020, 32: 46-58. doi: 10.1016/j.mattod.2019.08.004http://dx.doi.org/10.1016/j.mattod.2019.08.004
YANG W F, GONG W, GU W, et al. Self-powered interactive fiber electronics with visual-digital synergies [J]. Adv. Mater., 2021, 33(45): 2104681-1-10. doi: 10.1002/adma.202104681http://dx.doi.org/10.1002/adma.202104681
孙静, 马会利, 安众福, 等. 高分子长余辉发光材料研究进展 [J]. 发光学报, 2020, 41(12): 1490-1503. doi: 10.37188/CJL.20200317http://dx.doi.org/10.37188/CJL.20200317
SUN J, MA H L, AN Z F, et al. Recent development of polymers with long-lived persistent luminescence [J]. Chin. J. Lumin., 2020, 41(12): 1490-1503. (in Chinese). doi: 10.37188/CJL.20200317http://dx.doi.org/10.37188/CJL.20200317
GUO D, XIE G X, LUO J B. Mechanical properties of nanoparticles: basics and applications [J]. J. Phys. D: Appl. Phys., 2013, 47(1): 013001-1-25. doi: 10.1088/0022-3727/47/1/013001http://dx.doi.org/10.1088/0022-3727/47/1/013001
QIAN X, CAI Z R, SU M, et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification [J]. Adv. Mater., 2018, 30(25): 1800291-1-6. doi: 10.1002/adma.201800291http://dx.doi.org/10.1002/adma.201800291
MURUDKAR V V, GAONKAR A A, DESHPANDE V D, et al. Comparison of dielectric properties of polydimethylsiloxane(PDMS) grafted polyacrylates/nano alumina and nano silica composites[J]. AIP Conf. Proc., 2016, 1728(1): 020622-1-4.
GAN J Y, KANG M G, MEEKER M A, et al. Enhanced piezoluminescence in non-stoichiometric ZnS∶Cu microparticle based light emitting elastomers [J]. J. Mater. Chem. C, 2017, 5(22): 5387-5394. doi: 10.1039/c7tc01146fhttp://dx.doi.org/10.1039/c7tc01146f
YANG Y R, GAO W. Wearable and flexible electronics for continuous molecular monitoring [J]. Chem. Soc. Rev., 2019, 48(6): 1465-1491. doi: 10.1039/c7cs00730bhttp://dx.doi.org/10.1039/c7cs00730b
LIM H R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment [J]. Adv. Mater., 2020, 32(15): 1901924-1-43. doi: 10.1002/adma.201901924http://dx.doi.org/10.1002/adma.201901924
江禹, 马俊林, 朱楠. 柔性印刷可穿戴电化学传感器 [J]. 化学通报, 2020, 83(4): 325-333.
JIANG Y, MA J L, ZHU N. Flexible and printed wearable electrochemical sensor [J]. Chemistry, 2020, 83(4): 325-333. (in Chinese)
毛少辉, 陈冰, 郑元钿, 等. 基于应力发光材料的肢体运动压力可视化测量 [J]. 发光学报, 2021, 42(4): 397-403. doi: 10.37188/CJL.20210031http://dx.doi.org/10.37188/CJL.20210031
MAO S H, CHEN B, ZHENG Y T, et al. Dynamic limb-pressure visualization and measurement based on mechanoluminescent materials [J]. Chin. J. Lumin., 2021, 42(4): 397-403. (in Chinese). doi: 10.37188/CJL.20210031http://dx.doi.org/10.37188/CJL.20210031
0
Views
1334
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution