浏览全部资源
扫码关注微信
1.同济大学 物理科学与工程学院, 高等研究院, 上海 200092
2.江苏师范大学物理电子与工程学院 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
3.中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 201899
Published:05 November 2022,
Received:06 June 2022,
Revised:19 June 2022,
扫 描 看 全 文
刘坚,王无敌,宋青松等.Tb3+离子掺杂CaF2晶体的生长和发光性能[J].发光学报,2022,43(11):1750-1757.
LIU Jian,WANG Wu-di,SONG Qing-song,et al.Growth and Luminescence Properties of Tb3+ Ions Doped CaF2 Crystals[J].Chinese Journal of Luminescence,2022,43(11):1750-1757.
刘坚,王无敌,宋青松等.Tb3+离子掺杂CaF2晶体的生长和发光性能[J].发光学报,2022,43(11):1750-1757. DOI: 10.37188/CJL.20220229.
LIU Jian,WANG Wu-di,SONG Qing-song,et al.Growth and Luminescence Properties of Tb3+ Ions Doped CaF2 Crystals[J].Chinese Journal of Luminescence,2022,43(11):1750-1757. DOI: 10.37188/CJL.20220229.
使用温梯法生长了10%Tb,
x
%Y∶CaF
2
(
x
= 0,3,5,10)系列晶体。通过X射线衍射分析了晶体结构,结果表明高浓度的稀土离子掺杂使得晶胞参数增大,但是仍然保持CaF
2
的萤石立方结构。采用吸收光谱、发射光谱及荧光衰减曲线等测试数据对其发光性能进行了研究。通过J⁃O理论计算,共掺Y
3+
离子后,光谱品质因子
Ω
4
/
Ω
6
由0.75增加到0.80。F‑L公式计算得到10%Tb∶CaF
2
绿光545 nm处和黄光583 nm处的发射截面分别为0.89×10
-21
cm
2
和0.082×10
-21
cm
2
,10%Tb,10%Y∶CaF
2
在绿光545 nm处和黄光583 nm处的发射截面分别为0.89×10
-21
cm
2
和0.077×10
-21
cm
2
。并且Tb
3+
离子
5
D
4
能级的荧光寿命都在5 ms以上,并不存在高浓度掺杂导致的荧光寿命降低现象,长荧光寿命意味着Tb
3+
离子绝佳的储能能力。实验结果表明,Tb∶CaF
2
及Tb,Y∶CaF
2
晶体是有极大潜力实现可见激光输出的激光增益介质。
A series of 10%Tb∶
x
%Y∶CaF
2
(
x
= 0, 3, 5, 10) crystals have been successfully grown by the temperature gradient technique(TGT). The crystal structure was analyzed by X-ray diffraction, and the results showed that the high concentration of rare earth ion doping increased the unit cell parameters, but still maintained the fluorite cubic structure of CaF
2
. The absorption spectra, fluorescence spectra, and fluorescence decay curves were measured and analyzed at room temperature. By co-doping Y
3+
ions, the spectral quality factor
Ω
4
/
Ω
6
increased from 0.75 to 0.80. Using F-L formula, the emission cross sections of 10%Tb∶CaF
2
were calculated to be 0.89×10
-21
cm
2
and 0.082×10
-21
cm
2
for the 545 nm and 587 nm, respectively, and the emission cross sections of 10% Tb,10%Y∶CaF
2
were calculated to be 0.89×10
-21
cm
2
and 0.077×10
-21
cm
2
for the 545 nm and 587 nm. The fluorescence lifetime of
5
D
4
level is more than 5 ms, and there is no fluorescence lifetime quenching phenomenon caused by high concentration doping. The long fluorescence lifetime means that Tb
3+
ion has excellent energy storage capacity. The experimental results show that Tb∶CaF
2
and Tb,Y∶CaF
2
crystals are gain mediums with great potential to realize visible laser output.
Tb∶CaF2可见激光光谱性能J-O 理论
Tb∶CaF2visible laserspectral propertiesJ-O theory
CAVALLI E, BOVERO E, BELLETTI A. Optical spectroscopy of CaMoO4∶Dy3+ single crystals [J]. J. Phys. Condens. Matter, 2002, 14(20): 5221-5228. doi: 10.1088/0953-8984/14/20/317http://dx.doi.org/10.1088/0953-8984/14/20/317
LI J, WANG J Y, CHENG X F, et al. Growth and optical properties of DyxY1-xAl3(BO3)4 crystal [J]. J. Cryst. Growth, 2003, 253(1-4): 286-289. doi: 10.1016/s0022-0248(03)01013-3http://dx.doi.org/10.1016/s0022-0248(03)01013-3
LIU W P, ZHANG Q L, SUN D L, et al. Crystal growth and spectral properties of Sm∶GGG crystal [J]. J. Cryst. Growth, 2011, 331(1): 83-86. doi: 10.1016/j.jcrysgro.2011.07.023http://dx.doi.org/10.1016/j.jcrysgro.2011.07.023
DI J Q, XU X D, XIA C T, et al. Crystal growth and optical properties of Sm∶CaNb2O6 single crystal [J]. J. Alloys Compd., 2012, 536: 20-25. doi: 10.1016/j.jallcom.2012.04.105http://dx.doi.org/10.1016/j.jallcom.2012.04.105
CHEN B J, SHEN L F, PUN E Y B, et al. Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery [J]. Opt. Express, 2012, 20(2): 879-889. doi: 10.1364/oe.20.000879http://dx.doi.org/10.1364/oe.20.000879
KRÄNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers [J]. Laser Photonics Rev., 2016, 10(4): 548-568. doi: 10.1002/lpor.201500290http://dx.doi.org/10.1002/lpor.201500290
CHEN H, UEHARA H, KAWASE H, et al. Efficient visible laser operation of Tb∶LiYF4 and LiTbF4 [J]. Opt. Express, 2020, 28(8): 10951-10959. doi: 10.1364/oe.385020http://dx.doi.org/10.1364/oe.385020
CASTELLANO-HERNÁNDEZ E, METZ P W, DEMESH M, et al. Efficient directly emitting high-power Tb3+∶LiLuF4 laser operating at 587.5 nm in the yellow range [J]. Opt. Lett., 2018, 43(19): 4791-4794. doi: 10.1364/ol.43.004791http://dx.doi.org/10.1364/ol.43.004791
METZ P W, MARZAHL D T, MAJID A, et al. Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions [J]. Laser Photonics Rev., 2016, 10(2): 335-344. doi: 10.1002/lpor.201500274http://dx.doi.org/10.1002/lpor.201500274
METZ P W, MARZAHL D T, HUBER G, et al. Performance and wavelength tuning of green emitting terbium lasers [J]. Opt. Express, 2017, 25(5): 5716-5724. doi: 10.1364/oe.25.005716http://dx.doi.org/10.1364/oe.25.005716
YAO W C, LIU J, LI E H, et al. Tb, Y∶SrF2 crystal for efficient laser operation in the visible spectral region [J]. Opt. Lett., 2022, 47(4): 774-777. doi: 10.1364/ol.448898http://dx.doi.org/10.1364/ol.448898
MA F K, SU F, ZHOU R F, et al. The defect aggregation of RE3+(RE=Y, La-Lu) in MF2(M=Ca, Sr, Ba) fluorites [J]. Mater. Res. Bull., 2020, 125: 110788-1-12.
JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3): 750-761. doi: 10.1103/physrev.127.750http://dx.doi.org/10.1103/physrev.127.750
OFELT G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3): 511-520. doi: 10.1063/1.1701366http://dx.doi.org/10.1063/1.1701366
LIU B, SHI J J, WANG Q G, et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Tb∶YAlO3 [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 200: 58-62. doi: 10.1016/j.saa.2018.04.006http://dx.doi.org/10.1016/j.saa.2018.04.006
KAMINSKII A A. Crystalline Lasers: Physical Processes and Operating Schemes [M]. Boca Raton: CRC Press, 1996.
SARDAR D K, NASH K L, YOW R M, et al. Absorption intensities and emission cross sections of Tb3+ (4f8) in TbAlO3 [J]. J. Appl. Phys., 2006, 100(8): 083108-1-5. doi: 10.1063/1.2358401http://dx.doi.org/10.1063/1.2358401
LOIKO P, MATEOS X, DUNINA E, et al. Judd-Ofelt modelling and stimulated-emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal [J]. J. Lumin., 2017, 190: 37-44. doi: 10.1016/j.jlumin.2017.05.031http://dx.doi.org/10.1016/j.jlumin.2017.05.031
COLAK S, ZWICKER W K. Transition rates of Tb3+ in TbP5O14, TbLiP4O12, and TbAl3(BO3)4: an evaluation for laser applications [J]. J. Appl. Phys., 1983, 54(5): 2156-2166. doi: 10.1063/1.332393http://dx.doi.org/10.1063/1.332393
SHI J J, LIU B, WANG Q G, et al. Crystal growth and spectral properties of Tb∶Lu2O3 [J]. Chin. Phys. B, 2018, 27(9): 097801-1-6. doi: 10.1088/1674-1056/27/9/097801http://dx.doi.org/10.1088/1674-1056/27/9/097801
CHEN H J, LOISEAU P, AKA G, et al. Optical spectroscopic investigation of Ba3Tb(PO4)3 single crystals for visible laser applications [J]. J. Alloys Compd., 2018, 740: 1133-1139. doi: 10.1016/j.jallcom.2017.12.081http://dx.doi.org/10.1016/j.jallcom.2017.12.081
KESAVULU C R, SILVA A C A, DOUSTI M R, et al. Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses [J]. J. Lumin., 2015, 165: 77-84. doi: 10.1016/j.jlumin.2015.04.012http://dx.doi.org/10.1016/j.jlumin.2015.04.012
JAMALAIAH B C, KUMAR J S, BABU A M, et al. Study on spectroscopic and fluorescence properties of Tb3+-doped LBTAF glasses [J]. Phys. B Condens. Matter, 2009, 404(14-15): 2020-2024. doi: 10.1016/j.physb.2009.03.037http://dx.doi.org/10.1016/j.physb.2009.03.037
SHAN F X, ZHANG G C, ZHANG X Y, et al. Growth and spectroscopic properties of Tb3+-doped Na3La9O3(BO3)8 crystal [J]. J. Cryst. Growth, 2015, 424: 1-4. doi: 10.1016/j.jcrysgro.2015.04.040http://dx.doi.org/10.1016/j.jcrysgro.2015.04.040
0
Views
172
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution