浏览全部资源
扫码关注微信
合肥工业大学 材料科学与工程学院, 安徽 合肥 230009
Published:05 December 2022,
Received:16 June 2022,
Revised:04 July 2022,
移动端阅览
屈冰雁,王雷.3d过渡金属离子在无机化合物中的基态能级及变价趋势理论探索[J].发光学报,2022,43(12):1815-1822.
QU Bing-yan,WANG Lei.Theoretical Research on Ground State of 3d Transition Metal Ions in Inorganic Compounds and Their Charge Transition Tendencies[J].Chinese Journal of Luminescence,2022,43(12):1815-1822.
屈冰雁,王雷.3d过渡金属离子在无机化合物中的基态能级及变价趋势理论探索[J].发光学报,2022,43(12):1815-1822. DOI: 10.37188/CJL.20220222.
QU Bing-yan,WANG Lei.Theoretical Research on Ground State of 3d Transition Metal Ions in Inorganic Compounds and Their Charge Transition Tendencies[J].Chinese Journal of Luminescence,2022,43(12):1815-1822. DOI: 10.37188/CJL.20220222.
3d过渡金属(3d⁃TM, Transition metal,原子序数21~30)离子在无机发光材料领域展示了广阔的应用前景。通常,3d⁃TM离子在化合物中容易变价且其基态位置难以确定,这成为当前3d⁃TM离子激活发光材料智能设计的难点。本文综述了3d⁃TM离子在无机化合物中的光谱数据和第一性原理计算的光学转变能级,总结了3d-TM离子基态在无机化合物中的演化规律,给出了3d⁃TM离子在化合物中的变价趋势和物理本质。最后, 结合以上电子结构信息,对3d⁃TM离子激活发光材料的设计方式进行了展望。
3d transition metal(3d-TM) activated phosphors exhibit great potential applications in relevant fields. Generally, how to determine the ground state position of 3d-TM ion and engineer their valence state is significantly important in designing phosphor with target properties. This article reviews the spectroscopic data and optical transition levels of 3d-TM activated phosphors. Combining with the first-principle calculations, the evolution principle of the 3d-TM ground state in compounds is summarized. The charge transition tendencies and their theoretical understanding is revealed. Finally, the future design methods are prospected with above principles.
3d过渡金属离子基态能级发光性质调控
3d transition metal ionsground state energy levelluminescence property engineering
KÜCK S. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers [J]. Appl. Phys. B, 2001, 72(5): 515-562.
ZENG H T, ZHOU T L, WANG L, et al. Two-site occupation for exploring ultra-broadband near-infrared phosphor-double-perovskite La2MgZrO6∶Cr3+ [J]. Chem. Mater., 2019, 31(14): 5245-5253.
QU B Y, ZHANG B, WANG L, et al. Persistent luminescence hole-type materials by design: transition-metal-doped carbon allotrope and carbides [J]. ACS Appl. Mater. Interfaces, 2016, 8(8): 5439-5444.
PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates [J]. Nat. Mater., 2012, 11(1): 58-63.
QU B Y, ZHOU R L, WANG L, et al. How to predict the location of the defect levels induced by 3d transition metal ions at octahedral sites of aluminate phosphors [J]. J. Mater. Chem. C, 2019, 7(1): 95-103.
WANG L, DAI Z X, ZHOU R L, et al. Understanding the quenching nature of Mn4+ in wide band gap inorganic compounds: design principles for Mn4+ phosphors with higher efficiency [J]. Phys. Chem. Chem. Phys., 2018, 20(25): 16992-16999.
QU B Y, ZHANG B, WANG L, et al. Mechanistic study of the persistent luminescence of CaAl2O4∶Eu, Nd [J]. Chem. Mater., 2015, 27(6): 2195-2202.
QU B Y, LIU M Z, ZHOU R L, et al. The predictability of the ground state of 3dn transition metal ion as luminescent centers in the tetrahedral sites in inorganic compounds [J]. J. Lumin., 2022, 247: 118919.
BETHE H. Termaufspaltung in kristallen [J]. Ann. Phys., 1929, 395(2): 133-208.
SUGANO S, TANABE Y, KAMIMURA H. Multiplets of Transition-metal Ions in Crystals [M]. New York: Academic Press, 1970.
BOS A J J, VAN DUIJVENVOORDE R M, VAN DER KOLK E, et al. Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors [J]. J. Lumin., 2011, 131(7): 1465-1471.
DORENBOS P. Charge transfer bands in optical materials and related defect level location [J]. Opt. Mater., 2017, 69: 8-22.
苏锵. 镧系离子的电负性、电荷迁移带、标准还原电位与价态 [C]. 第十一届长春夏季化学讨论会——变价稀土化学与物理学术讨论会, 长春, 1992: 13.
SU Q. Electronegativity, charge transfer band, standard reduction potential and valence state of lanthanide ions [C]. The 11th Changchun Summer Chemistry Symposium—Symposium on Chemistry and Physics of Rare Earth ions in different Valent States,Changchun, 1992: 13. (in Chinese)
苏锵. 稀土化学 [M]. 郑州: 河南科学技术出版社, 1993.
SU Q. Chemistry of Rare Earths [M]. Zhengzhou: Henan Science and Technology Press, 1993. (in Chinese)
DORENBOS P. Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena [J]. J. Alloys Compd., 2009, 488(2): 568-573. doi: 10.1016/j.jallcom.2008.09.059http://dx.doi.org/10.1016/j.jallcom.2008.09.059
JØRGENSEN C K. Electron transfer spectra and collectively oxidized ligands [M]. JØRGENSEN C K. Oxidation Numbers and Oxidation States. Berlin: Springer, 1969: 141-186.
DUFFY J A. Optical electronegativity, χ*, of transition-metal ions in simple compounds [J]. J. Chem. Soc., Dalton Trans., 1983, (7): 1475-1478.
DORENBOS P, SHALAPSKA T, STRYGANYUK G, et al. Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12 [J]. J. Lumin., 2011, 131(4): 633-639. doi: 10.1016/j.jlumin.2010.11.005http://dx.doi.org/10.1016/j.jlumin.2010.11.005
DORENBOS P. Systematic behaviour in trivalent lanthanide charge transfer energies [J]. J. Phys.: Condens. Matter, 2003, 15(49): 8417-8434.
DIEKE G H. Spectra and Energy Levels of Rare Earth Ions in Crystals [M]. New York: John Wiley & Sons Inc, 1968.
DORENBOS P. Electron binding energies and how it relates to activator luminescence and bonding in compounds [J]. J. Lumin., 2016, 169: 381-386.
周公度, 段连运. 结构化学基础 [J]. 第3版. 北京: 北京大学出版社, 2002.
ZHOU G D,DUAN L Y. The Basis of Structural Chemistry [J]. 3rd ed. Beijing: Peking University Press, 2002. (in Chinese)
COTTON F A, WILKINSON G, GAUS P L. Basic Inorganic Chemistry [M]. 3rd ed. New York: Wiley, 1995.
XU Y D, WANG L, QU B Y, et al. The role of co-dopants on the luminescent properties of α-Al2O3∶Mn4+ and BaMgAl10O17∶Mn4+ [J]. J. Am. Ceram. Soc., 2019, 102(5): 2737-2744.
0
Views
764
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution