浏览全部资源
扫码关注微信
1.江苏师范大学 物理与电子工程学院, 江苏 徐州 221116
2.哈尔滨工程大学 物理与光电工程学院, 黑龙江 哈尔滨 150001
3.泰山学院 物理与电子工程学院, 山东 泰安 271000
Published:05 November 2022,
Received:31 May 2022,
Revised:20 June 2022,
移动端阅览
卢小送,王慈,高志刚等.稀土上转换发光氟硅酸盐微晶玻璃研究进展[J].发光学报,2022,43(11):1758-1778.
LU Xiao-song,WANG Ci,GAO Zhi-gang,et al.Research Progress in Up-conversion Fluorescent Fluosilicate Glass Ceramics[J].Chinese Journal of Luminescence,2022,43(11):1758-1778.
卢小送,王慈,高志刚等.稀土上转换发光氟硅酸盐微晶玻璃研究进展[J].发光学报,2022,43(11):1758-1778. DOI: 10.37188/CJL.20220208.
LU Xiao-song,WANG Ci,GAO Zhi-gang,et al.Research Progress in Up-conversion Fluorescent Fluosilicate Glass Ceramics[J].Chinese Journal of Luminescence,2022,43(11):1758-1778. DOI: 10.37188/CJL.20220208.
稀土上转换发光氟硅微晶玻璃是指稀土掺杂氟化物纳米晶与硅酸盐玻璃复合的发光材料,结合了氟化物晶体发光效率高与硅酸盐玻璃易加工和稳定性高的优势,在固体激光器、固态照明、光学编码防伪、光学测温等领域具有重要的应用前景,是无机发光材料中的研究热点。本文从含二元和三元氟化物纳米晶氟硅微晶玻璃上转换发光性能和应用研究两方面入手,介绍了该类材料的发展历程和研究现状,对比了不同组分、不同掺杂模式、不同晶体结构纳米晶上转换发光性能的差异,指出了目前研究中存在的问题,并对未来发展前景进行了展望。希望本文能为今后稀土上转换发光氟硅微晶玻璃的研究提供一定的实验参考。
As a popular inorganic luminescent materials, up-conversion fluorescent fluosilicate glass ceramics are promising in solid-state laser, solid-state illumination, optical anti-counterfeiting encode and optical thermometry. Research and applications of up-conversion fluorescent fluosilicate glass ceramics containing binary-elements nanocrystal, ternary-elements nanocrystal were reviewed. In which, we compared the effect of composition on nanocrystallization and up-conversion photoluminescence, and listed the issues need to be solved for the further development. We hope this review can provide inspiration and guidance to the future research of up-conversion fluorescent fluosilicate glass ceramics.
氟硅酸盐玻璃微晶玻璃纳米晶复合玻璃上转换发光稀土离子
fluosilicate glassglass ceramicscomposite glass with nanocrystalup-conversion photoluminescencerare earth ions
BLOEMBERGEN N. Solid state infrared quantum counters [J]. Phys. Rev. Lett., 1959, 2(3): 84-85. doi: 10.1103/physrevlett.2.84http://dx.doi.org/10.1103/physrevlett.2.84
BROWN M R, SHAND W A. Infrared quantum counter action in Er-doped fluoride lattices [J]. Phys. Rev. Lett., 1964, 12(13): 367-369.
AUZEL F. Compteur quantique par transfert d'energie entre deux ions de terres rares dans un tungstate mixte et dans un verre [J]. C.R. Acad. Sci. Paris, 1966, 262: 1016-1019.
AUZEL F E. Materials and devices using double-pumped-phosphors with energy transfer [J]. Proc. IEEE, 1973, 61(6): 758-786.
CHIVIAN J S, CASE W E, EDEN D D. The photon avalanche: A new phenomenon in Pr3+‐based infrared quantum counters [J]. Appl. Phys. Lett., 1979, 35(2): 124-125.
AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1): 139-174.
李梦萱, 郭英奎, 张宇. 稀土掺杂氟氧化物微晶玻璃的研究进展 [J]. 机械工程材料, 2016, 40(8): 1-6. doi: 10.11973/jxgccl201608001http://dx.doi.org/10.11973/jxgccl201608001
LI M X, GUO Y K, ZHANG Y. Research progress of rare earth doped oxy-fluoride glass ceramics [J]. Mater. Mech. Eng., 2016, 40(8): 1-6. (in Chinese). doi: 10.11973/jxgccl201608001http://dx.doi.org/10.11973/jxgccl201608001
QIU J B, JIAO Q, ZHOU D C, et al. Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics [J]. J. Rare Earths, 2016, 34(4): 341-367.
张军杰, 段忠超, 何冬兵, 等. 频率上转换掺稀土氧氟纳米微晶玻璃的研究进展 [J]. 激光与光电子学进展, 2005, 42(6): 2-7.
ZHANG J J, DUAN Z C, HE D B, et al. Progress and study on rare earth ions doped oxyfluoride glass ceramics for upconversion luminescence [J]. Laser Optoelectron. Prog., 2005, 42(6): 2-7. (in Chinese)
朱立刚, 肖卓豪, 卢安贤. 上转换发光氧氟微晶玻璃的研究进展 [J]. 材料导报, 2009, 23(5): 38-43. doi: 10.3321/j.issn:1005-023X.2009.05.010http://dx.doi.org/10.3321/j.issn:1005-023X.2009.05.010
ZHU L G, XIAO Z H, LU A X. Progress in research on oxyfluoride glass ceramics for upconversion luminescence [J]. Mater. Rev., 2009, 23(5): 38-43. (in Chinese). doi: 10.3321/j.issn:1005-023X.2009.05.010http://dx.doi.org/10.3321/j.issn:1005-023X.2009.05.010
郑志祥, 王迎春, 郭勇刚, 等. 稀土掺杂上转换发光氟氧微晶玻璃研究进展 [J]. 中国陶瓷, 2019, 55(10): 1-9.
ZHENG Z X, WANG Y C, GUO Y G, et al. Research progress on rare earth doped upconversion luminescent oxyfluoride glass ceramics [J]. China Ceram., 2019, 55(10): 1-9. (in Chinese)
AUZEL F, PECILE D, MORIN D. Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion [J]. J. Electrochem. Soc., 1975, 122(1): 101-107.
WANG Y H, OHWAKI J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion [J]. Appl. Phys. Lett., 1993, 63(24): 3268-3270.
TICK P A, BORRELLI N F, CORNELIUS L K, et al. Transparent glass ceramics for 1 300 nm amplifier applications [J]. J. Appl. Phys., 1995, 78(11): 6367-6374.
TICK P A. Are low-loss glass ceramic optical waveguides possible? [J]. Opt. Lett., 1998, 23(24): 1904-1905.
SAMSON B N, TICK P A, BORRELLI N F. Efficient neodymium-doped glass-ceramic fiber laser and amplifier [J]. Opt. Lett., 2001, 26(3): 145-147.
KAWAMOTO Y, KANNO R, QIU J. Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramics [J]. J. Mater. Sci., 1998, 33(1): 63-67.
KUKKONEN L L, REANEY I M, FURNISS D, et al. Nucleation and crystallisation of transparent, erbium Ⅲ-doped, oxyfluoride glass-ceramics [J]. J. Non‐Cryst. Solids, 2001, 290(1): 25-31.
DEJNEKA M J. The luminescence and structure of novel transparent oxyfluoride glass-ceramics [J]. J. Non‐Cryst. Solids, 1998, 239(1-3): 149-155.
TANABE S, HAYASHI H, HANADA T, et al. Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals [J]. Opt. Mater., 2002, 19(3): 343-349.
WANG J, QIAO X S, FAN X P, et al. Up-conversion and near-infrared emission of Er3+ doped transparent glass ceramics containing LaF3 nanocrystals [J]. Phys. B Condens. Matter, 2004, 353(3-4): 242-247.
CHEN D Q, WANG Y S, YU Y L, et al. Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+: β-YF3 nanocrystals embedded glass ceramic [J]. Appl. Phys. Lett., 2007, 91(5): 051920-1-3.
QIAO X S, FAN X P, WANG J, et al. Luminescence behavior of Er3+ ions in glass‐ceramics containing CaF2 nanocrystals [J]. J. Non‐Cryst. Solids, 2005, 351(5): 357-363.
QIAO X S, FAN X P, WANG J, et al. Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals [J]. J. Appl. Phys., 2006, 99(7): 074302-1-8.
QIAO X S, FAN X P, WANG M Q. Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals [J]. Scripta Mater., 2006, 55(3): 211-214.
CHEN D Q, WANG Y S, YU Y L, et al. Influences of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals [J]. Mater. Chem. Phys., 2006, 95(2-3): 264-269.
HUANG L H, YAMASHITA T, JOSE R, et al. Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals [J]. Appl. Phys. Lett., 2007, 90(13): 131116-1-3.
ALI M A, REN J J, LIU X F, et al. Understanding enhanced upconversion luminescence in oxyfluoride glass-ceramics based on local structure characterizations and molecular dynamics simulations [J]. J. Phys. Chem. C, 2017, 121(28): 15384-15391.
ZHANG X Y, HU L L, REN J J. Transparent aluminosilicate oxyfluoride glass ceramics containing upconversion luminescent CaF2 nanocrystals: glass-to-crystal structural evolution studied by the advanced solid-state NMR spectroscopy [J]. J. Phys. Chem. C, 2020, 124(2): 1594-1608.
FAN X P, WANG J, QIAO X S, et al. Preparation process and upconversion luminescence of Er3+-doped glass ceramics containing Ba2LaF7 nanocrystals [J]. J. Phys. Chem. B, 2006, 110(12): 5950-5954.
QIAO X S, FAN X P, WANG M Q. Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals [J]. Appl. Phys. Lett., 2006, 89(11): 111919.
DAN H K, ZHOUA D C, WANG R F, et al. Up-conversion of Er3+/Yb3+ co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals [J]. J. Rare Earths, 2013, 31(9): 843-848.
IMANIEH M H, MARTÍN I R, NADARAJAH A, et al. Upconversion emission of a novel glass ceramic containing Er3+, Yb3+∶Sr1-xYxF2+x nano-crystals [J]. J. Lumin., 2016, 172: 201-207.
LI Z C, ZHOU D C, YANG Y, et al. Adjustable multicolor up-energy conversion in light-luminesce in Tb3+/Tm3+/Yb3+ co-doped oxyfluorifFde glass-ceramics containing Ba2LaF7 nanocrystals [J]. Sci. Rep., 2017, 7(1): 6518-1-11.
WANG W M, WEI X T, CHEN H M, et al. Tunable up-conversion in glass-ceramics containing Ba2YF7∶Ho3+/Yb3+ nanocrystals via Ce3+ doping [J]. Appl. Phys. A, 2022, 128(4): 304-1-7.
LIU F, WANG Y S, CHEN D Q, et al. Upconversion emission of a novel glass ceramic containing Er3+∶BaYF5 nano-crystals [J]. Mater. Lett., 2007, 61(28): 5022-5025.
SHAN Z F, CHEN D Q, YU Y L, et al. Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals [J]. Mater. Res. Bull., 2010, 45(8): 1017-1020.
YANG J W, GUO H, LIU X Y, et al. Down-shift and up-conversion luminescence in BaLuF5∶Er3+ glass-ceramics [J]. J. Lumin., 2014, 151: 71-75.
JIANG S, GUO H, WEI X T, et al. Enhanced upconversion in Ho3+-doped transparent glass ceramics containing BaYbF5 nanocrystals [J]. J. Lumin., 2014, 152: 195-198.
BISWAS K, BALAJI S, GHOSH D, et al. Enhanced near-infrared to green upconversion from Er3+-doped oxyfluoride glass and glass ceramics containing BaGdF5 nanocrystals [J]. Int. J. Appl. Glass Sci., 2017, 8(2): 204-215.
KRIEKE G, SARAKOVSKIS A. Crystallization and upconversion luminescence of distorted fluorite nanocrystals in Ba2+ containing oxyfluoride glass ceramics [J]. J. Eur. Ceram. Soc., 2016, 36(7): 1715-1722. doi: 10.1016/j.jeurceramsoc.2016.01.025http://dx.doi.org/10.1016/j.jeurceramsoc.2016.01.025
KRIEKE G, SARAKOVSKIS A, IGNATANS R, et al. Phase transitions and upconversion luminescence in oxyfluoride glass ceramics containing Ba4Gd3F17 nanocrystals [J]. J. Eur. Ceram. Soc., 2017, 37: 1713-1722.
KRIEKE G, SARAKOVSKIS A, SPRINGIS M. Ordering of fluorite-type phases in erbium-doped oxyfluoride glass ceramics [J]. J. Eur. Ceram. Soc., 2018, 38(1): 235-243.
KRIEKE G, SARAKOVSKIS A, SPRINGIS M. Cubic and rhombohedral Ba4Lu3F17∶Er3+ in transparent glass ceramics: crystallization and upconversion luminescence [J]. J. Lumin., 2018, 200: 265-273.
LIU F, MA E, CHEN D Q, et al. Tunable red-green upconversion luminescence in novel transparent glass ceramics containing Er∶NaYF4 nanocrystals [J]. J. Phys. Chem. B, 2006, 110(42): 20843-20846.
ZHAO S L, SUN X, WANG X L, et al. The influence of phase evolution on optical properties in rare earth doped glass ceramics containing NaYF4 nanocrystals [J]. J. Eur. Ceram. Soc., 2015, 35(15): 4225-4231. doi: 10.1016/j.jeurceramsoc.2015.07.017http://dx.doi.org/10.1016/j.jeurceramsoc.2015.07.017
GUO Y Y, ZENG H D, YANG B, et al. Gd3+ doping induced enhanced upconversion luminescence in Er3+/Yb3+ co-doped transparent oxyfluoride glass ceramics containing NaYF4 nanocrystals [J]. Ceram. Int., 2018, 44(9): 10055-10060.
GAO Y, HU Y B, REN P, et al. Effect of glass network modifier R2O(R=Li, Na and K) on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics [J]. J. Rare Earths, 2015, 33(8): 830-836.
GAO Y, HU Y B, ZHOU D C, et al. Effect of crystalline fraction on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics [J]. J. Eur. Ceram. Soc., 2017, 37(2): 763-770.
ZHAO S L, XU S Q, JIA G H, et al. Er3+/Yb3+ codoped oxyfluoride borosilicate glass ceramic containing NaYF4 nanocrystals for amorphous silicon solar cells [J]. Mater. Lett., 2011, 65(15-16): 2407-2409.
DOMINIAK-DZIK G, LISIECKI R, RYBA-ROMANOWSKI W, et al. A study on microstructure and luminescent properties of oxyfluoride silicate glass-ceramics with (Ho3+,Yb3+)∶NaYF4 crystallites [J]. J. Alloys Compd., 2012, 511(1): 189-194.
LIU Y, LIU X Y, WANG W C, et al. Effect of adjusting composition on the crystallization and luminescence properties in NaYF4∶Er3+ embedded glass ceramics [J]. Mater. Res. Bull., 2017, 95: 235-242.
REN P, YANG Y, ZHOU D C, et al. Effect of lithium halide on glass network structure and upconversion luminescence in Er3+ co-doped oxyfluoride glass ceramics containing NaGdF4 nanocrystals [J]. Opt. Mater., 2017, 72: 330-333.
KRIEKE G, SARAKOVSKIS A, SPRINGIS M. Upconversion luminescence of a transparent glass ceramics with hexagonal Na(Gd,Lu)F4 nanocrystals [J]. J. Alloys Compd., 2017, 694: 952-958.
VELÁZQUEZ J J, BALDA R, FERNÁNDEZ J, et al. Transparent glass-ceramics of sodium lutetium fluoride co-doped with erbium and ytterbium [J]. J. Non‑Cryst. Solids, 2018, 501: 136-144.
CHEN D Q, PENG Y Z, LI X Y, et al. Competitive nanocrystallization of Na3ScF6 and NaYbF4 in aluminosilicate glass and optical spectroscopy of Ln3+ dopants [J]. Ceram. Int., 2018, 44(13): 15666-15673.
GAO Z G, LAI Z Q, LU K L, et al. Efficient green upconversion luminescence in highly crystallized ultratransparent nano-glass ceramics containing isotropic KY3F10 nanocrystals [J]. Opt. Lett., 2019, 44(19): 4674-4677.
PENG Y Z, ZHONG J S, LI X Y, et al. Controllable competitive Nanocrystallization of La3+-based fluorides in aluminosilicate glasses and optical spectroscopy [J]. J. Eur. Ceram. Soc., 2019, 39(4): 1420-1427.
FANG Z J, LI J F, LONG Y, et al. High-efficiency luminescence in optical glass via the controllable crystallization of KYb3F10 nanocrystals depending on the dopants [J]. Opt. Lett., 2020, 45(11): 3030-3033.
LI J F, LONG Y, ZHAO Q C, et al. Efficient white upconversion luminescence in Yb3+/Eu3+ doubly-doped transparent glass ceramic [J]. Opt. Express, 2021, 29(14): 21763-21772.
LI J F, LONG Y, ZHAO Q C, et al. Nano-crystallization of ln-fluoride crystals in glass-ceramics via inducing of Yb3+ for efficient near-infrared upconversion luminescence of Tm3+ [J]. Nanomaterials, 2021, 11(4): 1033-1-10.
CHEN J K, WANG S X, LIN J D, et al. CsRe2F7@glass nanocomposites with efficient up-/down-conversion luminescence: from in situ nanocrystallization synthesis to multi-functional applications [J]. Nanoscale, 2019, 11(46): 22359-22368. doi: 10.1039/C9NR08656Khttp://dx.doi.org/10.1039/C9NR08656K
GAO Z G, LU K L, LU X S, et al. Ultrabright single-band red upconversion luminescence in highly transparent fluorosilicate glass ceramics containing KMnF3 perovskite nanocrystals [J]. Opt. Lett., 2019, 44(12): 2959-2961.
FANG Z J, CHEN Z, PENG W C, et al. Phase-separation engineering of glass for drastic enhancement of upconversion luminescence [J]. Adv. Opt. Mater., 2019, 7(8): 1801572-1-8.
李文豪, 谢玉清, 石海征, 等. 稀土离子在KMnF3纳米晶复合玻璃中的微观分布机理 [J]. 物理学报, 2022, 71(8): 084205-1-8.
LI W H, XIE Y Q, SHI H Z, et al. Mechanisms of rare earth ion distribution in fluorosilicate glass containing KMnF3 nanocrystal [J]. Acta Phys. Sinica, 2022, 71(8): 084205-1-8. (in Chinese)
CHEN D Q, WAN Z Y, ZHOU Y, et al. Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors [J]. ACS Appl. Mater. Interfaces, 2015, 7(34): 19484-19493.
TANG J, DU P, LI W P, et al. Boosted thermometric performance in NaGdF4∶Er3+/Yb3+ upconverting nanorods by Fe3+ ions doping for contactless nanothermometer based on thermally and non-thermally coupled levels [J]. J. Lumin., 2020, 224: 117296. doi: 10.1016/j.jlumin.2020.117296http://dx.doi.org/10.1016/j.jlumin.2020.117296
CHEN D Q, PENG Y Z, LI X Y, et al. Simultaneous tailoring of dual-phase fluoride precipitation and dopant distribution in glass to control upconverting luminescence [J]. ACS Appl. Mater. Interfaces, 2019, 11(33): 30053-30064.
WANG S X, CHEN J K, LIN J D, et al. Nanocrystallization of lanthanide-doped KLu2F7-KYb2F7 solid-solutions in aluminosilicate glass for upconverted solid-state-lighting and photothermal anti-counterfeiting [J]. J. Mater. Chem. C, 2019, 7(46): 14571-14580.
高志刚, 肖静, 任晶. 掺杂双相纳米晶复合光子玻璃的研究进展 [J]. 激光与光电子学进展, 2021, 58(15): 1516016-1-16. doi: 10.3788/lop202158.1516016http://dx.doi.org/10.3788/lop202158.1516016
GAO Z G, XIAO J, REN J. Progress in luminescent ions-doped photonic glasses containing dual-phase nanocrystals [J]. Laser Optoelectron. Prog., 2021, 58(15): 1516016-1-16. (in Chinese). doi: 10.3788/lop202158.1516016http://dx.doi.org/10.3788/lop202158.1516016
FANG Z J, LI J F, SUN L P, et al. In situ dopant-induced nano-crystallization of rare-earth-fluoride crystals in phase-separated networks for highly-efficient photoemission and photonic devices [J]. J. Mater. Chem. C. 2021, 9(28): 9001-9010.
OUYANG T C, KANG S L, ZHANG Z S, et al. Microlaser output from rare-earth ion-doped nanocrystal-in-glass microcavities [J]. Adv. Opt. Mater., 2019, 7(21): 1900197-1-7. doi: 10.1002/adom.201900197http://dx.doi.org/10.1002/adom.201900197
欧阳天昶, 董国平, 邱建荣. 基于稀土离子掺杂氟氧化物微晶玻璃材料的固体激光器研究进展 [J]. 激光与光电子学进展, 2020, 57(7): 071608-1-9.
OUYANG T C, DONG G P, QIU J R. Research progress in solid-state lasers based on rare earth ion-doped oxyfluoride glass ceramics [J]. Laser Optoelectron. Prog., 2020, 57(7): 071608-1-9. (in Chinese)
LI X Y, CHEN D Q, HUANG F, et al. Phase-selective nanocrystallization of NaLnF4 in aluminosilicate glass for random laser and 940 nm LED-excitable upconverted luminescence [J]. Laser Photonics Rev., 2018, 12(7): 1800030-1-8. doi: 10.1002/lpor.201800030http://dx.doi.org/10.1002/lpor.201800030
WANG S X, ZHU J W, HUANG H, et al. Erasable glass-stabilized perovskite quantum dots for NIR-laser-stimuli-responsive optical security [J]. Cell Rep. Phys. Sci., 2022, 3(3): 100794-1-13.
JIANG S, ZENG P, LIAO L Q, et al. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4∶Yb3+/Er3+ nanocrystals [J]. J. Alloys Compd., 2014, 617: 538-541.
CAO J K, LI X M, WANG Z X, et al. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6∶Er3+ glass ceramics [J]. Sens. Actuators B Chem., 2016, 224: 507-513.
HU F F, CAO J K, WEI X T, et al. Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion [J]. J. Mater. Chem. C, 2016, 4(42): 9976-9985.
CHEN W P, HU F F, WEI R F, et al. Optical thermometry based on up-conversion luminescence of Tm3+ doped transparent Sr2YF7 glass ceramics [J]. J. Lumin., 2017, 192: 303-309. doi: 10.1016/j.jlumin.2017.07.002http://dx.doi.org/10.1016/j.jlumin.2017.07.002
CHEN W P, CAO J K, HU F F, et al. Sr2GdF7∶Tm3+/Yb3+ glass ceramic: a highly sensitive optical thermometer based on FIR technique [J]. J. Alloys Compd., 2018, 735: 2544-2550.
CHEN S Y Z, SONG W H, CAO J K, et al. Highly sensitive optical thermometer based on FIR technique of transparent NaY2F7∶Tm3+/Yb3+ glass ceramic [J]. J. Alloys Compd., 2020, 825: 154011-1-6.
CHEN D Q, LIU S, LI X Y, et al. Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+∶YF3 nanocrystals embedded glass ceramic [J]. J. Eur. Ceram. Soc., 2017, 37(15): 4939-4945.
XIN F X, ZHAO S L, HUANG L H, et al. Up-conversion luminescence of Er3+-doped glass ceramics containing β-NaGdF4 nanocrystals for silicon solar cells [J]. Mater. Lett., 2012, 78: 75-77.
CHEN Z, WU G B, JIA H, et al. Improved up-conversion luminescence from Er3+∶LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation [J]. J. Phys. Chem. C, 2015, 119(42): 24056-24061.
0
Views
545
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution