浏览全部资源
扫码关注微信
1.江南大学 化学与材料工程学院, 合成与生物胶体教育部重点实验室, 江苏 无锡 214122
2.上海理工大学 材料与化学学院, 上海 200093
Published:05 October 2022,
Received:30 May 2022,
Revised:16 June 2022,
移动端阅览
李子洋,李煊赫,李慧珺等.微流控技术制备荧光纳米材料研究进展[J].发光学报,2022,43(10):1524-154110.37188/CJL.20220200.
LI Zi-yang,LI Xuan-he,LI Hui-jun,et al.Research Progress in Preparation of Fluorescent Nanomaterials by Microfluidic Technique[J].Chinese Journal of Luminescence,2022,43(10):1524-154110.37188/CJL.20220200.
荧光纳米材料因其独特的光学性能而被广泛用于传感、生物成像、离子检测等领域。微流控是一种能在微尺度上精确控制和操控流体的技术,近年来在有机合成、荧光材料制备、细胞检测、药物筛选等领域展现出重要的应用价值。本文以荧光纳米材料的制备为切入点,综述了微流控在该领域的研究进展。首先,根据反应器特征结构阐述了芯片微反应器、管式微反应器和离心式微反应器的特点及原理;进一步地,归纳整理了不同类型荧光纳米材料制备过程的典型例子,包括半导体纳米颗粒、碳点、钙钛矿纳米颗粒、稀土纳米材料、金属及氧化物复合纳米颗粒;最后,立足研究现状指出了该领域的挑战及研究方向。
Fluorescent nanomaterials have been widely used in diverse fields like sensing, bio-imaging, ions detection, owing to their unique optical properties. Microfluidic is an effective technique that allows the precise control and manipulation of fluids in microscale dimension. In recent years, it has exhibited important practical values in organic synthesis, fluorescent materials preparation, cell detection, and drug screening. This work focuses on the microfluidic synthesis of fluorescent nanomaterials, and reviews recent advances in this field. Firstly, according to the characteristic structure, different types of microfluidic reactors along with their working principles are elaborated, including chip-based microreactors, tubular microreactors, and centrifugal microreactors. Afterwards, representative examples of fluorescent nanomaterials are summarized, such as semiconductor nanoparticles, carbon dots, perovskite nanoparticles, rare earth nanomaterials, metal and metal oxide composites. Finally, the existed challenges and future development of this field are prospected.
微流控技术连续流合成微反应器荧光纳米材料
microfluidic techniquecontinuous flow synthesismicroreactorfluorescent nanomaterials
SINGH H, BAMRAH A, BHARDWAJ S K, et al. Nanomaterial-based fluorescent sensors for the detection of lead ions [J]. J. Hazard. Mater., 2020, 407: 124379-1-21. doi: 10.1016/j.jhazmat.2020.124379http://dx.doi.org/10.1016/j.jhazmat.2020.124379
LIU Y, DENG Y, DONG H M, et al. Progress on sensors based on nanomaterials for rapid detection of heavy metal ions [J]. Sci. China Chem., 2017, 60(3): 329-337. doi: 10.1007/s11426-016-0253-2http://dx.doi.org/10.1007/s11426-016-0253-2
LIU Y Q, GUO Q S, QU X J, et al. Supramolecularly assembled ratiometric fluorescent sensory nanosystem for “traffic light”-type lead ion or pH sensing [J]. ACS Appl. Mater. Interfaces, 2018, 10(36): 30662-30669. doi: 10.1021/acsami.8b10007http://dx.doi.org/10.1021/acsami.8b10007
YANG M, CHEN X, SU Y, et al. The fluorescent palette of DNA-templated silver nanoclusters for biological applications [J]. Front. Chem., 2020, 8: 601621-1-8. doi: 10.3389/fchem.2020.601621http://dx.doi.org/10.3389/fchem.2020.601621
DONG J T, ZHAO M P. In⁃vivo fluorescence imaging of adenosine 5'-triphosphate [J]. TrAC Trends Anal. Chem., 2016, 80: 190-203. doi: 10.1016/j.trac.2016.03.020http://dx.doi.org/10.1016/j.trac.2016.03.020
LIU X T, ZHANG H J, SONG Z P, et al. A ratiometric nanoprobe for biosensing based on green fluorescent graphitic carbon nitride nanosheets as an internal reference and quenching platform [J]. Biosens. Bioelectron., 2019, 129: 118-123. doi: 10.1016/j.bios.2019.01.032http://dx.doi.org/10.1016/j.bios.2019.01.032
WU Y H, SUN J Y, HUANG X L, et al. Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips [J]. Trends Food Sci. Technol., 2021, 118: 658-678. doi: 10.1016/j.tifs.2021.10.025http://dx.doi.org/10.1016/j.tifs.2021.10.025
陈静, 杨曌, 黄宇豪, 等. 基于荧光猝灭效应的光纤传感器研究进展 [J]. 发光学报, 2020, 41(10): 1269-1278. doi: 10.37188/CJL.20200206http://dx.doi.org/10.37188/CJL.20200206
CHEN J, YANG Z, HUANG Y H, et al. Research progress of optical fiber sensors based on fluorescence quenching effect [J]. Chin. J. Lumin., 2020, 41(10): 1269-1278. (in Chinese). doi: 10.37188/CJL.20200206http://dx.doi.org/10.37188/CJL.20200206
TAO H Q, YANG K, MA Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite [J]. Small, 2012, 8(2): 281-290. doi: 10.1002/smll.201101706http://dx.doi.org/10.1002/smll.201101706
WANG F, PANG S P, WANG L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents [J]. Chem. Mater., 2010, 22(16): 4528-4530. doi: 10.1021/cm101350uhttp://dx.doi.org/10.1021/cm101350u
RAY S C, SAHA A, JANA N R, et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application [J]. J. Phys. Chem. C, 2009, 113(43): 18546-18551. doi: 10.1021/jp905912nhttp://dx.doi.org/10.1021/jp905912n
JEONG G, LEE J M, LEE J A, et al. Microwave-assisted synthesis of multifunctional fluorescent carbon quantum dots from A4/B2 polyamidation monomer sets [J]. Appl. Surf. Sci., 2021, 542: 148471-1-10. doi: 10.1016/j.apsusc.2020.148471http://dx.doi.org/10.1016/j.apsusc.2020.148471
RAHIM S, HASIM M H, AYOB M T M, et al. Gd2O2S∶Eu3+ nanophosphors: microwave synthesis and X-ray imaging detector application [J]. Mater. Res., 2019, 22(6): e20190383-1-6. doi: 10.1590/1980-5373-mr-2019-0383http://dx.doi.org/10.1590/1980-5373-mr-2019-0383
PEDROSO C C S, CARVALHO J M, RODRIGUES L C V, et al. Rapid and energy-saving microwave-assisted solid-state synthesis of Pr3+-, Eu3+-, or Tb3+- doped Lu2O3 persistent luminescence materials [J]. ACS Appl. Mater. Interfaces, 2016, 8(30): 19593-19604. doi: 10.1021/acsami.6b04683http://dx.doi.org/10.1021/acsami.6b04683
LIN L L, MA X T, LI S R, et al. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles [J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510. doi: 10.1007/s11705-019-1810-7http://dx.doi.org/10.1007/s11705-019-1810-7
YANG W X, SUN M X, SONG H J, et al. A novel method to synthesize luminescent silicon carbide nanoparticles based on dielectric barrier discharge plasma [J]. J. Mater. Chem. C, 2020, 8(47): 16949-16956. doi: 10.1039/d0tc04658bhttp://dx.doi.org/10.1039/d0tc04658b
YANG X L, ZHANG Y S, LIU W Q, et al. Confined synthesis of phosphorus, nitrogen co-doped carbon dots with green luminescence and anion recognition performance [J]. Polyhedron, 2019, 171: 389-395. doi: 10.1016/j.poly.2019.07.040http://dx.doi.org/10.1016/j.poly.2019.07.040
BARAGAU I A, POWER N P, MORGAN D J, et al. Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent nitrogen-doped carbon quantum dots as nanosensors [J]. J. Mater. Chem. A, 2020, 8(6): 3270-3279. doi: 10.1039/c9ta11781dhttp://dx.doi.org/10.1039/c9ta11781d
MAJHI D, DAS K, MISHRA A, et al. One pot synthesis of CdS/BiOBr/Bi2O2CO3: a novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine [J]. Appl. Catal. B: Environ., 2020, 260: 118222-1-13. doi: 10.1016/j.apcatb.2019.118222http://dx.doi.org/10.1016/j.apcatb.2019.118222
LIU W L, LIU G D, SHI N, et al. Carbon quantum dot-modified and chloride-doped ordered macroporous graphitic carbon nitride composites for hydrogen evolution [J]. Appl. Nano Mater., 2020, 3(12): 12188-12197. doi: 10.1021/acsanm.0c02667http://dx.doi.org/10.1021/acsanm.0c02667
XU P D, XIE R X, LIU Y P, et al. Bioinspired microfibers with embedded perfusable helical channels [J]. Adv. Mater., 2017, 29(34): 1701664-1-7. doi: 10.1002/adma.201701664http://dx.doi.org/10.1002/adma.201701664
VANDARKUZHALI S A A, NATARAJAN S, JEYABALAN S, et al. Pineapple peel-derived carbon dots: applications as sensor, molecular keypad lock, and memory device [J]. ACS Omega, 2018, 3(10): 12584-12592. doi: 10.1021/acsomega.8b01146http://dx.doi.org/10.1021/acsomega.8b01146
WANG Z Y, LUAN X Z, WANG B C, et al. Luminescent characteristics of a single-phase warm white-light-emitting phosphor Ba3Lu4O9∶Dy3+ with excellent thermal stability [J]. Chem. Phys. Lett., 2021, 762: 138154-1-6. doi: 10.1016/j.cplett.2020.138154http://dx.doi.org/10.1016/j.cplett.2020.138154
LAI X F, LIU C, HE H, et al. Hydrothermal synthesis and characterization of nitrogen-doped fluorescent carbon quantum dots from citric acid and urea [J]. Ferroelectrics, 2020, 566(1): 116-123. doi: 10.1080/00150193.2020.1762435http://dx.doi.org/10.1080/00150193.2020.1762435
BARET J C. Surfactants in droplet-based microfluidics [J]. Lab Chip, 2012, 12(3): 422-433. doi: 10.1039/c1lc20582jhttp://dx.doi.org/10.1039/c1lc20582j
ZHU Y J, CHEN Q M, SHAO L Y, et al. Microfluidic immobilized enzyme reactors for continuous biocatalysis [J]. React. Chem. Eng., 2020, 5(1): 9-32. doi: 10.1039/c9re00217khttp://dx.doi.org/10.1039/c9re00217k
TANG J, IBRAHIM M, CHAKRABARTY K, et al. Toward secure and trustworthy cyberphysical microfluidic biochips [J]. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst., 2019, 38(4): 589-603. doi: 10.1109/tcad.2018.2855132http://dx.doi.org/10.1109/tcad.2018.2855132
ROSA P M, GOPALAKRISHNAN N, IBRAHIM H, et al. The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device [J]. Lab Chip, 2016, 16(19): 3728-3740. doi: 10.1039/c6lc00702chttp://dx.doi.org/10.1039/c6lc00702c
KONG F, ZHANG X, ZHANG H B, et al. Inhibition of multidrug resistance of cancer cells by co-delivery of DNA nanostructures and drugs using porous silicon nanoparticles@giant liposomes [J]. Adv. Funct. Mater., 2015, 25(22): 3330-3340. doi: 10.1002/adfm.201500594http://dx.doi.org/10.1002/adfm.201500594
WANG H H, YANG S Y, YIN S N, et al. Janus suprabead displays derived from the modified photonic crystals toward temperature magnetism and optics multiple responses [J]. ACS Appl. Mater. Interfaces, 2015, 7(16): 8827-8833. doi: 10.1021/acsami.5b01436http://dx.doi.org/10.1021/acsami.5b01436
YU X, CHENG G, ZHOU M D, et al. On-demand one-step synthesis of monodisperse functional polymeric microspheres with droplet microfluidics [J]. Langmuir, 2015, 31(13): 3982-3992. doi: 10.1021/acs.langmuir.5b00617http://dx.doi.org/10.1021/acs.langmuir.5b00617
RAO L S, TANG Y, LU H G, et al. Highly photoluminescent and stable N-doped carbon dots as nanoprobes for Hg2+ detection [J]. Nanomaterials, 2018, 8(11): 900. doi: 10.3390/nano8110900http://dx.doi.org/10.3390/nano8110900
SONG Y, LIU S E, WANG B Y, et al. Continuous and controllable preparation of polyaniline with different reaction media in microreactors for supercapacitor applications [J]. Chem. Eng. Sci., 2019, 207: 820-828. doi: 10.1016/j.ces.2019.07.008http://dx.doi.org/10.1016/j.ces.2019.07.008
FU F F, WANG J L, TAN Y R, et al. Super-hydrophilic zwitterionic polymer surface modification facilitates liquid transportation of microfluidic sweat sensors [J]. Macromo. Rapid Commun., 2022, 43(5): 2100776. doi: 10.1002/marc.202100776http://dx.doi.org/10.1002/marc.202100776
ZHANG Y Q, YESILOZ G, SHARAHI H J, et al. Geomaterial-functionalized microfluidic devices using a universal surface modification approach [J]. Adv. Mater. Interfaces, 2019, 6(23): 1900995-1-16. doi: 10.1002/admi.201900995http://dx.doi.org/10.1002/admi.201900995
LIN L L, PHO H Q, ZONG L, et al. Microfluidic plasmas: novel technique for chemistry and chemical engineering [J]. Chem. Eng. J., 2021, 417: 129355. doi: 10.1016/j.cej.2021.129355http://dx.doi.org/10.1016/j.cej.2021.129355
HAO N J, NIE Y, ZHANG J X J. Microfluidic flow synthesis of functional mesoporous silica nanofibers with tunable aspect ratios [J]. ACS Sustainable Chem. Eng., 2018, 6(2): 1522-1526. doi: 10.1021/acssuschemeng.7b03527http://dx.doi.org/10.1021/acssuschemeng.7b03527
XING Y L, ZHAO L L, CHENG Z Y, et al. Microfluidics-based sensing of biospecies [J]. ACS Appl. Bio. Mater., 2021, 4(3): 2160-2191. doi: 10.1021/acsabm.0c01271http://dx.doi.org/10.1021/acsabm.0c01271
LIN L L, YIN Y J, STAROSTIN S A, et al. Microfluidic fabrication of fluorescent nanomaterials: a review [J]. Chem. Eng. J., 2021, 425: 131511. doi: 10.1016/j.cej.2021.131511http://dx.doi.org/10.1016/j.cej.2021.131511
LAND K J, MBANJWA M, KORVINK J G. Microfluidic channel structures speed up mixing of multiple emulsions by a factor of ten [J]. Biomicrofluidics, 2014, 8(5): 054101-1-11. doi: 10.1063/1.4894498http://dx.doi.org/10.1063/1.4894498
XIE J, MIAO Y N, SHIH J, et al. Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures [J]. Anal. Chem., 2005, 77(21): 6947-6953. doi: 10.1021/ac0510888http://dx.doi.org/10.1021/ac0510888
CHARWAT V, ROTHBAUER M, TEDDE S F, et al. Monitoring dynamic interactions of tumor cells with tissue and immune cells in a lab-on-a-chip [J]. Anal. Chem., 2013, 85(23): 11471-11478. doi: 10.1021/ac4033406http://dx.doi.org/10.1021/ac4033406
NIGHTINGALE A M, KRISHNADASAN S H, BERHANU D, et al. A stable droplet reactor for high temperature nanocrystal synthesis [J]. Lab Chip, 2011, 11(7): 1221-1227. doi: 10.1039/c0lc00507jhttp://dx.doi.org/10.1039/c0lc00507j
NIU G D, ZHANG L, RUDITSKIY A, et al. A droplet-reactor system capable of automation for the continuous and scalable production of noble-metal nanocrystals [J]. Nano Lett., 2018, 18(6): 3879-3884. doi: 10.1021/acs.nanolett.8b01200http://dx.doi.org/10.1021/acs.nanolett.8b01200
WANG Y Y, LIU S Y, ZHANG T K, et al. A centrifugal microfluidic pressure regulator scheme for continuous concentration control in droplet-based microreactors [J]. Lab Chip, 2019, 19(22): 3870-3879. doi: 10.1039/c9lc00631ahttp://dx.doi.org/10.1039/c9lc00631a
PARK B H, KIM D, JUNG J H, et al. An advanced centrifugal microsystem toward high-throughput multiplex colloidal nanocrystal synthesis [J]. Sens. Actuators B: Chem., 2015, 209: 927-933. doi: 10.1016/j.snb.2014.12.067http://dx.doi.org/10.1016/j.snb.2014.12.067
GARCIA E, HASENBANK M S, FINLAYSON B, et al. High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel [J]. Lab Chip, 2007, 7(2): 249-255. doi: 10.1039/b608789bhttp://dx.doi.org/10.1039/b608789b
BRAFF W A, BAZANT M Z, BUIE C R. Membrane-less hydrogen bromine flow battery [J]. Nat. Commun., 2013, 4: 2346-1-6. doi: 10.1038/ncomms3346http://dx.doi.org/10.1038/ncomms3346
LI Y, VAN ROY W, LAGAE L, et al. Analysis of fully on-chip microfluidic electrochemical systems under laminar flow [J]. Electrochim. Acta, 2017, 231: 200-208. doi: 10.1016/j.electacta.2017.02.054http://dx.doi.org/10.1016/j.electacta.2017.02.054
DENG B, TIAN Y, YU X, et al. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip [J]. Anal. Chim. Acta, 2014, 820: 104-111. doi: 10.1016/j.aca.2014.02.033http://dx.doi.org/10.1016/j.aca.2014.02.033
EDEL J B, FORTT R, DEMELLO J C, et al. Microfluidic routes to the controlled production of nanoparticles [J]. Chem. Commun., 2002, (10): 1136-1137. doi: 10.1039/b202998ghttp://dx.doi.org/10.1039/b202998g
WANG H Z, LI X Y, UEHARA M, et al. Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor [J]. Chem. Commun., 2004, (1): 48-49. doi: 10.1039/b310644fhttp://dx.doi.org/10.1039/b310644f
WAN Z, LUAN W L, TU S T. Size controlled synthesis of blue emitting core/shell nanocrystals via microreaction [J]. J. Phys. Chem. C, 2011, 115(5): 1569-1575. doi: 10.1021/jp108901zhttp://dx.doi.org/10.1021/jp108901z
LAN W J, LI S W, XU J H, et al. Controllable preparation of nanoparticle-coated chitosan microspheres in a co-axial microfluidic device [J]. Lab Chip, 2011, 11(4): 652-657. doi: 10.1039/c0lc00463dhttp://dx.doi.org/10.1039/c0lc00463d
MATLOCK-COLANGELO L, COLANGELO N W, FENZL C, et al. Passive mixing capabilities of micro- and nanofibres when used in microfluidic systems [J]. Sensors, 2016, 16(8): 1238-1-18. doi: 10.3390/s16081238http://dx.doi.org/10.3390/s16081238
SHIBA K, SUGIYAMA T, TAKEI T, et al. Controlled growth of silica‑titania hybrid functional nanoparticles through a multistep microfluidic approach [J]. Chem. Commun., 2015, 51(87): 15854-15857. doi: 10.1039/c5cc07230ahttp://dx.doi.org/10.1039/c5cc07230a
USON L, ARRUEBO M, SEBASTIAN V, et al. Single phase microreactor for the continuous, high-temperature synthesis of <4 nm superparamagnetic iron oxide nanoparticles [J]. Chem. Eng. J., 2018, 340: 66-72. doi: 10.1016/j.cej.2017.12.024http://dx.doi.org/10.1016/j.cej.2017.12.024
钱锦远, 李晓娟, 吴赞, 等. 微通道内液-液两相流流型及传质的研究进展 [J]. 化工进展, 2019, 38(4): 1624-1633. doi: 10.16085/j.issn.1000-6613.2018-0826http://dx.doi.org/10.16085/j.issn.1000-6613.2018-0826
QIAN J Y, LI X J, WU Z, et al. Research progress on flow regimes and mass transfer of liquid-liquid two-phase flow in microchannels [J]. Chem. Ind. Eng. Prog., 2019, 38(4): 1624-1633. (in Chinese). doi: 10.16085/j.issn.1000-6613.2018-0826http://dx.doi.org/10.16085/j.issn.1000-6613.2018-0826
王长亮, 靳遵龙, 王永庆, 等. 微通道气液两相流研究进展 [J]. 化工进展, 2017, 36(S1): 1-7. doi: 10.16085/j.issn.1000-6613.2016-2382http://dx.doi.org/10.16085/j.issn.1000-6613.2016-2382
WANG C L, JIN Z L, WANG Y Q, et al. Research progress of gas-liquid two-phase flow in micro-channels [J]. Chem. Ind. Eng. Prog., 2017, 36(S1): 1-7. (in Chinese). doi: 10.16085/j.issn.1000-6613.2016-2382http://dx.doi.org/10.16085/j.issn.1000-6613.2016-2382
LUO X, SU P, ZHANG W, et al. Microfluidic devices in fabricating nano or micromaterials for biomedical applications [J]. Adv. Mater. Technol., 2019, 4(12): 1900488-1-31. doi: 10.1002/admt.201900488http://dx.doi.org/10.1002/admt.201900488
SEN N, KOLI V, SINGH K K, et al. Segmented microfluidics for synthesis of BaSO4 nanoparticles [J]. Chem. Eng. Proc.⁃Process Intensif., 2018, 125: 197-206. doi: 10.1016/j.cep.2018.01.012http://dx.doi.org/10.1016/j.cep.2018.01.012
CABEZA V S, KUHN S, KULKARNI A A, et al. Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform [J]. Langmuir, 2012, 28(17): 7007-7013. doi: 10.1021/la205131ehttp://dx.doi.org/10.1021/la205131e
LARREA A, SEBASTIAN V, IBARRA A, et al. Gas slug microfluidics: a unique tool for ultrafast, highly controlled growth of iron oxide nanostructures [J]. Chem. Mater., 2015, 27(12): 4254-4260. doi: 10.1021/acs.chemmater.5b00284http://dx.doi.org/10.1021/acs.chemmater.5b00284
THORSEN T, ROBERTS R W, ARNOLD F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device [J]. Phys. Rev. Lett., 2001, 86(18): 4163-4166. doi: 10.1103/physrevlett.86.4163http://dx.doi.org/10.1103/physrevlett.86.4163
张井志, 陈武铠, 周乃香, 等. T型微通道内液滴形成过程及长度的实验研究 [J]. 浙江大学学报(工学版), 2020, 54(5): 1007-1013. doi: 10.3785/j.issn.1008-973X.2020.05.019http://dx.doi.org/10.3785/j.issn.1008-973X.2020.05.019
ZHANG J Z, CHEN W K, ZHOU N X, et al. Experiment study on formation and length of droplets in T-junction microchannels [J]. J. Zhejiang Univ. (Eng. Sci.), 2020, 54(5): 1007-1013. (in Chinese). doi: 10.3785/j.issn.1008-973X.2020.05.019http://dx.doi.org/10.3785/j.issn.1008-973X.2020.05.019
LAI W F, WONG W T. Property-tuneable microgels fabricated by using flow-focusing microfluidic geometry for bioactive agent delivery [J]. Pharmaceutics, 2021, 13(6): 787-1-10. doi: 10.3390/pharmaceutics13060787http://dx.doi.org/10.3390/pharmaceutics13060787
韩丹丹, 张金凤, 邓吉楠, 等. 基于流动聚焦微流控芯片的液晶微滴制备及传感响应分析 [J]. 分析化学, 2021, 49(10): 1678-1685. doi: 10.19756/j.issn.0253-3820.210443http://dx.doi.org/10.19756/j.issn.0253-3820.210443
HAN D D, ZHANG J F, DENG J N, et al. Preparation and sensing studies of flow focusing microfluidic chip-based liquid crystal droplet [J]. Chin. J. Anal. Chem., 2021, 49(10): 1678-1685. (in Chinese). doi: 10.19756/j.issn.0253-3820.210443http://dx.doi.org/10.19756/j.issn.0253-3820.210443
EKANEM E E, ZHANG Z L, VLADISAVLJEVIĆ G T. Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles [J]. J. Colloid Interface Sci., 2017, 498: 387-394. doi: 10.1016/j.jcis.2017.03.067http://dx.doi.org/10.1016/j.jcis.2017.03.067
BANDULASENA M V, VLADISAVLJEVIĆ G T, BENYAHIA B. Droplet-based microfluidic method for robust preparation of gold nanoparticles in axisymmetric flow focusing device [J]. Chem. Eng. Sci., 2019, 195: 657-664. doi: 10.1016/j.ces.2018.10.010http://dx.doi.org/10.1016/j.ces.2018.10.010
ZHANG J, WANG Y H, WANG F. Microreactor-assisted synthesis of a nickel-based infinite coordination polymer and its application in the selective adsorption of alcohols [J]. Inorg. Chem. Commun., 2019, 109: 107566-1-4. doi: 10.1016/j.inoche.2019.107566http://dx.doi.org/10.1016/j.inoche.2019.107566
ALBUQUERQUE G H, FITZMORRIS R C, AHMADI M, et al. Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures [J]. CrystEngComm, 2015, 17(29): 5502-5510. doi: 10.1039/c5ce00848dhttp://dx.doi.org/10.1039/c5ce00848d
LIN L L, LI X H, GAO H Y, et al. Microfluidic plasma-based continuous and tunable synthesis of Ag-Au nanoparticles and their SERS properties [J]. Ind. Eng. Chem. Res., 2022, 61(5): 2183-2194. doi: 10.1021/acs.iecr.1c04048http://dx.doi.org/10.1021/acs.iecr.1c04048
LI X H, LIN L L, CHIANG W H, et al. Microplasma synthesized gold nanoparticles for surface enhanced Raman spectroscopic detection of methylene blue [J]. React. Chem. Eng., 2022, 7(2): 346-353. doi: 10.1039/d1re00446hhttp://dx.doi.org/10.1039/d1re00446h
SONG Y, SONG J N, SHANG M J, et al. Hydrodynamics and mass transfer performance during the chemical oxidative polymerization of aniline in microreactors [J]. Chem. Eng. J., 2018, 353: 769-780. doi: 10.1016/j.cej.2018.07.166http://dx.doi.org/10.1016/j.cej.2018.07.166
YANG H W, FAN N N, LUAN W L, et al. Synthesis of monodisperse nanocrystals via microreaction: open-to-air synthesis with oleylamine as a coligand [J]. Nanoscale Res. Lett., 2009, 4(4): 344-352. doi: 10.1007/s11671-009-9251-8http://dx.doi.org/10.1007/s11671-009-9251-8
CZUGALA M, GORKIN III R, PHELAN T, et al. Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis [J]. Lab Chip, 2012, 12(23): 5069-5078. doi: 10.1039/c2lc40781ghttp://dx.doi.org/10.1039/c2lc40781g
KIM T H, PARK J, KIM C J, et al. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens [J]. Anal. Chem., 2014, 86(8): 3841-3848. doi: 10.1021/ac403971hhttp://dx.doi.org/10.1021/ac403971h
YEH Y H, HWANG D F, DENG J F, et al. Toxicology of bile salts in animals [J]. Toxin Rev., 2008, 27(1): 1-26. doi: 10.1080/15569540701864387http://dx.doi.org/10.1080/15569540701864387
AOTA A, MAWATARI K, KITAMORI T. Parallel multiphase microflows: fundamental physics, stabilization methods and applications [J]. Lab Chip, 2009, 9(17): 2470-2476. doi: 10.1039/b904430mhttp://dx.doi.org/10.1039/b904430m
WOJNICKI M, HESSEL V. Quantum materials made in microfluidics-critical review and perspective [J]. Chem. Eng. J., 2022, 438: 135616. doi: 10.1016/j.cej.2022.135616http://dx.doi.org/10.1016/j.cej.2022.135616
CHENG R, LI F C, ZHANG J H, et al. Fabrication of amphiphilic quantum dots towards high-colour-quality light-emitting devices [J]. J. Mater. Chem. C, 2019, 7(14): 4244-4249. doi: 10.1039/c9tc00113ahttp://dx.doi.org/10.1039/c9tc00113a
KAI S, BAIG S, JIANG G M, et al. Improved light emitting UV curable PbS quantum dots-polymer composite optical waveguides [J]. Opt. Commun., 2017, 402: 606-611. doi: 10.1016/j.optcom.2017.06.083http://dx.doi.org/10.1016/j.optcom.2017.06.083
HU S Y, ZHANG B T, ZENG S W, et al. Microfluidic chip enabled one-step synthesis of biofunctionalized CuInS2/ZnS quantum dots [J]. Lab Chip, 2020, 20(16): 3001-3010. doi: 10.1039/d0lc00202jhttp://dx.doi.org/10.1039/d0lc00202j
BAO Z, LUO J W, WANG Y S, et al. Microfluidic synthesis of CsPbBr3/Cs4PbBr6 nanocrystals for inkjet printing of mini-LEDs [J]. Chem. Eng. J., 2021, 46: 130849. doi: 10.1016/j.cej.2021.130849http://dx.doi.org/10.1016/j.cej.2021.130849
LIU J F, GU Y R, WU Q R, et al. Synthesis and study of CdSe QDs by a microfluidic method and via a bulk reaction [J]. Crystals, 2019, 9(7): 368-1-9. doi: 10.3390/cryst9070368http://dx.doi.org/10.3390/cryst9070368
ANKIREDDY S R, KIM J. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip [J]. Int. J. Nanomedicine, 2015, 10(S1): 121-128.
SALDANHA P L, LESNYAK V, MANNA L. Large scale syntheses of colloidal nanomaterials [J]. Nano Today, 2017, 12: 46-63. doi: 10.1016/j.nantod.2016.12.001http://dx.doi.org/10.1016/j.nantod.2016.12.001
SINGH A, LIMAYE M, SINGH S, et al. A facile and fast approach for the synthesis of doped nanoparticles using a microfluidic device [J]. Nanotechnology, 2008, 19(24): 245613-1-7. doi: 10.1088/0957-4484/19/24/245613http://dx.doi.org/10.1088/0957-4484/19/24/245613
CHENG R, MA K Z, YE H G, et al. Magnetothermal microfluidic-directed synthesis of quantum dots [J]. J. Mater. Chem. C, 2020, 8(19): 6358-6363. doi: 10.1039/d0tc00305khttp://dx.doi.org/10.1039/d0tc00305k
BAEK J, SHEN Y, LIGNOS I, et al. Multistage microfluidic platform for the continuous synthesis of Ⅲ-Ⅴ core/shell quantum dots [J]. Angew. Chem. Int. Ed., 2018, 57(34): 10915-10918. doi: 10.1002/anie.201805264http://dx.doi.org/10.1002/anie.201805264
ALIZADEH N, SALIMI A. Polymer dots as a novel probe for fluorescence sensing of dopamine and imaging in single living cell using droplet microfluidic platform [J]. Anal. Chim. Acta, 2019, 1091: 40-49. doi: 10.1016/j.aca.2019.08.036http://dx.doi.org/10.1016/j.aca.2019.08.036
ERMIS E, BAGHERI Z, BEHROODI E, et al. Red emissive N-S co-doped carbon dots for live imaging of tumor spheroid in the microfluidic device [J]. J. Sci.: Adv. Mater. Dev., 2022, 7(2): 100404-1-9. doi: 10.1016/j.jsamd.2021.11.006http://dx.doi.org/10.1016/j.jsamd.2021.11.006
ZHOU S S, HU T, HAN G H, et al. Accurate cancer diagnosis and stage monitoring enabled by comprehensive profiling of different types of exosomal biomarkers: surface proteins and miRNAs [J]. Small, 2020, 16(48): 2004492-1-11. doi: 10.1002/smll.202004492http://dx.doi.org/10.1002/smll.202004492
LU Y, ZHANG L, LIN H W. The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots [J]. Chem. Eur. J., 2014, 20(15): 4246-4250. doi: 10.1002/chem.201304358http://dx.doi.org/10.1002/chem.201304358
RAO L S, TANG Y, LI Z T, et al. Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection [J]. Mater. Sci. Eng. C, 2017, 81: 213-223. doi: 10.1016/j.msec.2017.07.046http://dx.doi.org/10.1016/j.msec.2017.07.046
LIN L L, YIN Y J, LI Z Y, et al. Continuous microflow synthesis of fluorescent phosphorus and nitrogen co-doped carbon quantum dots [J]. Chem. Eng. Res. Des., 2022, 178: 395-404. doi: 10.1016/j.cherd.2021.12.037http://dx.doi.org/10.1016/j.cherd.2021.12.037
TANG Y, RAO L S, LI Z T, et al. Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg2+ ions [J]. Sens. Actuators B: Chem., 2018, 258: 637-647. doi: 10.1016/j.snb.2017.11.140http://dx.doi.org/10.1016/j.snb.2017.11.140
方骏, 陈泽廷, 沈江荣, 等. 不同溶剂中CsPbBr3钙钛矿纳米晶的制备及性能 [J]. 发光学报, 2020, 41(11): 1376-1382. doi: 10.37188/cjl.20200187http://dx.doi.org/10.37188/cjl.20200187
FANG J, CHEN Z T, SHEN J R, et al. Property of CsPbBr3 perovskite nanocrystals prepared in different solvents [J]. Chin. J. Lumin., 2020, 41(11): 1376-1382. (in Chinese). doi: 10.37188/cjl.20200187http://dx.doi.org/10.37188/cjl.20200187
NEJAND B A, NAZARI P, GHARIBZADEH S, et al. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate [J]. Chem. Commun., 2017, 53(4): 747-750. doi: 10.1039/c6cc07573hhttp://dx.doi.org/10.1039/c6cc07573h
WANG Y, LI X M, SONG J Z, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics [J]. Adv. Mater., 2015, 27(44): 7101-7108. doi: 10.1002/adma.201503573http://dx.doi.org/10.1002/adma.201503573
MACEICZYK R M, DÜMBGEN K, LIGNOS I, et al. Microfluidic reactors provide preparative and mechanistic insights into the synthesis of formamidinium lead halide perovskite nanocrystals [J]. Chem. Mater., 2017, 29(19): 8433-8439. doi: 10.1021/acs.chemmater.7b02998http://dx.doi.org/10.1021/acs.chemmater.7b02998
LIGNOS I, PROTESESCU L, EMIROGLU D B, et al. Unveiling the shape evolution and halide-ion-segregation in blue- emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform [J]. Nano Lett., 2018, 18(2): 1246-1252. doi: 10.1021/acs.nanolett.7b04838http://dx.doi.org/10.1021/acs.nanolett.7b04838
BAO Z, WANG H C, JIANG Z F, et al. Continuous synthesis of highly stable Cs4PbBr6 perovskite microcrystals by a microfluidic system and their application in white-light-emitting diodes [J]. Inorg. Chem., 2018, 57(21): 13071-13074. doi: 10.1021/acs.inorgchem.8b01985http://dx.doi.org/10.1021/acs.inorgchem.8b01985
LIGNOS I, STAVRAKIS S, NEDELCU G, et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping [J]. Nano Lett., 2016, 16(3): 1869-1877. doi: 10.1021/acs.nanolett.5b04981http://dx.doi.org/10.1021/acs.nanolett.5b04981
宋雪霞, 李耀刚, 石国英, 等. 微反应器中LaPO4∶Ce3+,Tb3+纳米发光颗粒的制备及表征 [J]. 稀有金属材料与工程, 2009, 38(3): 485-487.
SONG X X, LI Y G, SHI G Y, et al. Preparation and characterization of LaPO4∶Ce3+,Tb3+ nanoparticles in a microreactor system [J]. Rare Metal Mat. Eng., 2009, 38(3): 485-487. (in Chinese)
ZHU X X, ZHANG Q H, LI Y G, et al. Facile crystallization control of LaF3/LaPO4∶Ce, Tb nanocrystals in a microfluidic reactor using microwave irradiation [J]. J. Mater. Chem., 2010, 20(9): 1766-1771. doi: 10.1039/b922873jhttp://dx.doi.org/10.1039/b922873j
CHE D C, ZHU X X, LIU P F, et al. A facile aqueous strategy for the synthesis of high-brightness LaPO4∶Eu nanocrystals via controlling the nucleation and growth process [J]. J. Lumin., 2014, 153: 369-374. doi: 10.1016/j.jlumin.2014.03.028http://dx.doi.org/10.1016/j.jlumin.2014.03.028
LI S K, MENG Y C, GUO Y J, et al. Precision tuning of rare-earth-doped upconversion nanoparticles via droplet-based microfluidic screening [J]. J. Mater. Chem. C, 2021, 9(3): 925-933. doi: 10.1039/d0tc04309ehttp://dx.doi.org/10.1039/d0tc04309e
WICKBERG A, MUELLER J B, MANGE Y J, et al. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence [J]. Appl. Phys. Lett., 2015, 106(13): 133103-1-4. doi: 10.1063/1.4916222http://dx.doi.org/10.1063/1.4916222
BRESSAN L P, LIMA T M, SILVEIRA G DDA, et al. Low-cost and simple FDM-based 3D-printed microfluidic device for the synthesis of metallic core-shell nanoparticles [J]. SN Appl. Sci., 2020, 2(5): 984-1-8. doi: 10.1007/s42452-020-2768-2http://dx.doi.org/10.1007/s42452-020-2768-2
WU H, QIAO J, HWANG Y H, et al. Synthesis of ficin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions [J]. Talanta, 2019, 200: 547-552. doi: 10.1016/j.talanta.2019.03.077http://dx.doi.org/10.1016/j.talanta.2019.03.077
ROIG Y, MARRE S, CARDINAL T, et al. Synthesis of exciton luminescent ZnO nanocrystals using continuous supercritical microfluidics [J]. Angew. Chem. Int. Ed., 2011, 50(50): 12071-12074. doi: 10.1002/anie.201106201http://dx.doi.org/10.1002/anie.201106201
YANG W M, YANG H F, DING W H, et al. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method [J]. Ultrason. Sonochem., 2016, 33: 106-117. doi: 10.1016/j.ultsonch.2016.04.020http://dx.doi.org/10.1016/j.ultsonch.2016.04.020
LAN J W, CHEN J Y, LI N X, et al. Microfluidic generation of magnetic-fluorescent Janus microparticles for biomolecular detection [J]. Talanta, 2016, 151: 126-131. doi: 10.1016/j.talanta.2016.01.024http://dx.doi.org/10.1016/j.talanta.2016.01.024
LI G, CHENG R, CHENG H Y, et al. Microfluidic synthesis of robust carbon dots-functionalized photonic crystals [J]. Chem. Eng. J., 2021, 405: 126539. doi: 10.1016/j.cej.2020.126539http://dx.doi.org/10.1016/j.cej.2020.126539
XIE A Q, GUO J Z, ZHU L L, et al. Carbon dots promoted photonic crystal for optical information storage and sensing [J]. Chem. Eng. J., 2021, 415: 128950-1-10. doi: 10.1016/j.cej.2021.128950http://dx.doi.org/10.1016/j.cej.2021.128950
LIANG X X, BAKER R W, WU K J, et al. Continuous low temperature synthesis of MAPbX3 perovskite nanocrystals in a flow reactor [J]. React. Chem. Eng., 2018, 3(5): 640-644. doi: 10.1039/c8re00098khttp://dx.doi.org/10.1039/c8re00098k
KNAUER A, EISENHARDT A, KRISCHOK S, et al. Nanometer precise adjustment of the silver shell thickness during automated Au-Ag core-shell nanoparticle synthesis in micro fluid segment sequences [J]. Nanoscale, 2014, 6(10): 5230-5238. doi: 10.1039/c3nr06438ghttp://dx.doi.org/10.1039/c3nr06438g
SINGH V. 3D-printed device for synthesis of magnetic and metallic nanoparticles [J]. J. Flow Chem., 2021, 11(2): 135-142. doi: 10.1007/s41981-020-00124-3http://dx.doi.org/10.1007/s41981-020-00124-3
LIU D, JING Y, WANG K, et al. Reaction study of α-phase NaYF4∶Yb,Er generation via a tubular microreactor: discovery of an efficient synthesis strategy [J]. Nanoscale, 2019, 11(17): 8363-8371. doi: 10.1039/c8nr09957jhttp://dx.doi.org/10.1039/c8nr09957j
0
Views
683
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution