浏览全部资源
扫码关注微信
1.辽宁科技学院电气与信息工程学院 机器人工程系, 辽宁 本溪 117004
2.华晨宝马汽车有限公司, 辽宁 沈阳 110000
3.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
4.中国科学院大学 材料科学与光电技术学院, 北京 100049
Published:05 August 2022,
Received:12 May 2022,
Revised:27 May 2022,
移动端阅览
张志军,陈贺,张建伟等.单片双波长输出垂直外腔面发射激光器[J].发光学报,2022,43(08):1266-1272.
ZHANG Zhi-jun,CHEN He,ZHANG Jian-wei,et al.Dual-wavelength Emission of Vertical External Cavity Surface Emitting Laser with Single Gain Chip[J].Chinese Journal of Luminescence,2022,43(08):1266-1272.
张志军,陈贺,张建伟等.单片双波长输出垂直外腔面发射激光器[J].发光学报,2022,43(08):1266-1272. DOI: 10.37188/CJL.20220195.
ZHANG Zhi-jun,CHEN He,ZHANG Jian-wei,et al.Dual-wavelength Emission of Vertical External Cavity Surface Emitting Laser with Single Gain Chip[J].Chinese Journal of Luminescence,2022,43(08):1266-1272. DOI: 10.37188/CJL.20220195.
报道了利用垂直外腔面发射激光器(Vertical external cavity surface emitting laser,VECSEL)的增益谱与腔模的大失配设计实现VECSEL双波长同时激射的方法,设计了稳定的振荡腔结构,理论预测了这种VECSEL的三种工作状态并进行了实验验证。随着VECSEL泵浦功率增加,增益芯片内部工作温度逐步升高,VECSEL依次出现带边波长激射、双波长激射及腔模波长激射三种工作状态。最初VECSEL的激射波长位于带边模式决定的激光波长(952.7 nm),随着泵浦功率增加,增益芯片热效应增强,腔模波长与带边波长出现模式竞争,此后出现双波长激射现象。双波长峰值强度接近时VECSEL激光输出功率达到359 mW,激光波长分别位于954.2 nm和1 001.2 nm,在该位置附近VECSEL的输出功率曲线呈现明显的二次阈值现象。当泵浦功率持续增加,激光输出波长变为腔模波长激射,激光波长位于1 002.4 nm。在单波长及双波长工作状态下VECSEL的光斑形貌均为高斯形貌的圆形对称激光光束,激光光束发散角半角由5.7°增加到7.9°。这种单芯片双波长输出VECSEL方案未来在抗干扰激光雷达以及频率转换太赫兹激光等方面有着很好的应用潜力。
The dual-wavelength lasing from vertical external cavity surface emitting laser(VECSEL) is realized by the large gain spectra and cavity mode detuning, and the stable external cavity is designed. The emission wavelength can be switched between single-wavelength lasing and dual-wavelength lasing according to our simulation results, and three operation modes are proposed and proved by our experiments. The side-mode of VECSEL with side-mode wavelength appears when the pump power exceeds the threshold power. As the pump power is increased, the rollover of output power can be observed on the power curve. However, when the pump power is further increased, the output power can be increased again, which we called the second-threshold phenomenon. And the dual-wavelength lasing can be observed. The output power can reach 359 mW during the dual-wavelength lasing with the lasing wavelengths located at 954.2 nm and 1 001.2 nm. When the pump power exceeds the second threshold, only one lasing wavelength of 1 002.4 nm can be observed, and this wavelength is the cavity-mode wavelength. The laser spot behaves the circular symmetrical shape with Gaussian morphology at both the single-wavelength and dual-wavelength lasing. The divergence angle of VECSEL is increased from 5.9° to 7.9°, which might be caused by the mode competition between the two modes. The dual-wavelength lasing of VECSEL from single gain chip proposed by us has great potential in the LiDAR and terahertz applications in the future.
双波长面发射激光器模式竞争激光雷达频率转换
dual-wavelength lasingmode competitionLiDARfrequency conversion
CALVEZ S, HASTIE J E, GUINA M, et al. Semiconductor disk lasers for the generation of visible and ultraviolet radiation [J]. Laser Photonics Rev., 2009, 3(5): 407-434. doi: 10.1002/lpor.200810042http://dx.doi.org/10.1002/lpor.200810042
术玲, 海一娜, 邹永刚, 等. 940 nm水平腔面发射半导体激光器设计与制备 [J]. 发光学报, 2021, 42(2): 223-230. doi: 10.37188/CJL.20200346http://dx.doi.org/10.37188/CJL.20200346
ZHU L, HAI Y N, ZOU Y G, et al. Design and fabrication of 940 nm horizontal cavity surface emitting semiconductor laser [J]. Chin. J. Lumin., 2021, 42(2): 223-230. (in Chinese). doi: 10.37188/CJL.20200346http://dx.doi.org/10.37188/CJL.20200346
张继业, 李雪, 张建伟, 等. 垂直腔面发射激光器研究进展 [J]. 发光学报, 2020, 41(12): 1443-1459. doi: 10.37188/CJL.20200339http://dx.doi.org/10.37188/CJL.20200339
ZHANG J Y, LI X, ZHANG J W, et al. Research progress of vertical-cavity surface-emitting laser [J]. Chin. J. Lumin., 2020, 41(12): 1443-1459. (in Chinese). doi: 10.37188/CJL.20200339http://dx.doi.org/10.37188/CJL.20200339
RAHIMI-IMAN A. Recent advances in VECSELs [J]. J. Opt., 2016, 18(9): 093003-1-30. doi: 10.1088/2040-8978/18/9/093003http://dx.doi.org/10.1088/2040-8978/18/9/093003
GUINA M, RANTAMÄKI A, HÄRKÖNEN A. Optically pumped VECSELs: review of technology and progress [J]. J. Phys. D Appl. Phys., 2017, 50(38): 383001-1-37. doi: 10.1088/1361-6463/aa7bfdhttp://dx.doi.org/10.1088/1361-6463/aa7bfd
FALLAHI M, HESSENIUS C, LUKOWSKI M. High-power tunable two-color VECSEL for on-demand wavelength generation [C]. Proceedings of SPIE 9370, Quantum Sensing and Nanophotonic Devices Ⅻ, San Francisco, 2015: 937026. doi: 10.1117/12.2084094http://dx.doi.org/10.1117/12.2084094
LU C A, ROACH W P, BALAKRISHNAN G, et al. Beam combination of multiple vertical external cavity surface emitting lasers via volume bragg gratings [C]. Proceedings of SPIE 8966, Vertical External Cavity Surface Emitting Lasers(VECSELs) Ⅳ, San Francisco, 2014: 185-190. doi: 10.1117/12.2039666http://dx.doi.org/10.1117/12.2039666
ZHANG F, GAAFAR M, MÖLLER C, et al. Dual-wavelength emission from a serially connected two-chip VECSEL [J]. IEEE Photonics Technol. Lett., 2016, 28(8): 927-929. doi: 10.1109/lpt.2016.2517702http://dx.doi.org/10.1109/lpt.2016.2517702
JASIK A, SOKÓŁ A K, BRODA A, et al. Dual-wavelength vertical external-cavity surface-emitting laser: strict growth control and scalable design [J]. Appl. Phys. B, 2016, 122(2): 23-1-8. doi: 10.1007/s00340-015-6307-6http://dx.doi.org/10.1007/s00340-015-6307-6
KIM K S, YOO J R, LEE S M, et al. Highly efficient InGaAs QW vertical external cavity surface emitting lasers emitting at 1 060 nm [J]. J. Cryst. Growth, 2006, 287(2): 629-632. doi: 10.1016/j.jcrysgro.2005.10.144http://dx.doi.org/10.1016/j.jcrysgro.2005.10.144
SHEN J L, CHANG C Y, LIU H C, et al. Reflectivity and photoluminescence studies in Bragg reflectors with absorbing layers [J]. Semicond. Sci. Technol., 2001, 16(7): 548-552. doi: 10.1088/0268-1242/16/7/304http://dx.doi.org/10.1088/0268-1242/16/7/304
ZHANG J W, ZHANG X, ZHU H B, et al. High-temperature operating 894.6 nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks [J]. Opt. Express, 2015, 23(11): 14763-14773. doi: 10.1364/oe.23.014763http://dx.doi.org/10.1364/oe.23.014763
LI Z W, ZENG Y G, SONG Y, et al. Effect of substrate misorientation on the structural and optical characteristics of In-rich InGaAs/GaAsP quantum wells [J]. Appl. Sci., 2021, 11(18): 8639-1-15. doi: 10.3390/app11188639http://dx.doi.org/10.3390/app11188639
KIM J P, SARANGAN A M. Temperature-dependent Sellmeier equation for the refractive index of AlxGa1-xAs [J]. Opt. Lett., 2007, 32(5): 536-538. doi: 10.1364/ol.32.000536http://dx.doi.org/10.1364/ol.32.000536
PASSARO V M N, MAGNO F, DE LEONARDIS F. Optimization of Bragg reflectors in AlGaAs/GaAs VCSELs [J]. Laser Phys. Lett., 2005, 2(5): 239-246. doi: 10.1002/lapl.200410179http://dx.doi.org/10.1002/lapl.200410179
KUZNETSOV M, HAKIMI F, SPRAGUE R, et al. High-power(>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams [J]. IEEE Photonics Technol. Lett., 1997, 9(8): 1063-1065. doi: 10.1109/68.605500http://dx.doi.org/10.1109/68.605500
TROMBORG B, OSMUNDSEN J, OLESEN H. Stability analysis for a semiconductor laser in an external cavity [J]. IEEE J. Quantum Electron., 1984, 20(9): 1023-1032. doi: 10.1109/jqe.1984.1072508http://dx.doi.org/10.1109/jqe.1984.1072508
GBELE K, LAURAIN A, HADER J, et al. Design and fabrication of hybrid metal semiconductor mirror for high-power VECSEL [J]. IEEE Photonics Technol. Lett., 2016, 28(7): 732-735. doi: 10.1109/lpt.2015.2507059http://dx.doi.org/10.1109/lpt.2015.2507059
0
Views
294
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution