浏览全部资源
扫码关注微信
华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510641
Published:05 August 2022,
Received:11 May 2022,
Revised:30 May 2022,
移动端阅览
叶子青,张灯亮,段兴兴等.基于氟代苯乙胺有机阳离子的准二维钙钛矿发光二极管[J].发光学报,2022,43(08):1244-1255.
YE Zi-qing,ZHANG Deng-liang,DUAN Xing-xing,et al.Quasi-2D Perovskite Light-emitting Diodes with Fluorophenethylammonium as Organic Cations[J].Chinese Journal of Luminescence,2022,43(08):1244-1255.
叶子青,张灯亮,段兴兴等.基于氟代苯乙胺有机阳离子的准二维钙钛矿发光二极管[J].发光学报,2022,43(08):1244-1255. DOI: 10.37188/CJL.20220194.
YE Zi-qing,ZHANG Deng-liang,DUAN Xing-xing,et al.Quasi-2D Perovskite Light-emitting Diodes with Fluorophenethylammonium as Organic Cations[J].Chinese Journal of Luminescence,2022,43(08):1244-1255. DOI: 10.37188/CJL.20220194.
近年来,钙钛矿发光二极管(PeLEDs)发展非常迅速,其性能得到了大幅提升,而构筑具有量子阱结构的准二维钙钛矿是开发高性能PeLEDs的有效方法之一。大尺寸有机阳离子是构成准二维钙钛矿的关键组分,对调节准二维钙钛矿的薄膜结构和光电性质具有重要作用。本文通过在铯铅卤化物(CsPb
X
3
)钙钛矿中引入两种单氟取代的溴化苯乙胺(
o
⁃FPEABr(邻位取代)和
p
⁃FPEABr(对位取代)),采用无反溶剂的一步法制备了准二维钙钛矿薄膜和发光器件,研究了它们对准二维钙钛矿成相分布和器件性能的影响。研究发现,
p
⁃FPEABr使准二维钙钛矿形成了大量的低维相,特别是具有强激子‐声子耦合的二维相,而高维相含量较少。相反地,
o
⁃FPEABr能够有效地抑制低维相,并促进高维相的形成,有利于降低非辐射复合和提高辐射复合。形成能计算结果显示,基于
p
⁃FPEABr的低维相比基于
o
⁃FPEABr的低维相具有更好的热力学稳定性,导致了准二维钙钛矿中成相分布的差异,表明改变氟原子的取代位置能够调控准二维钙钛矿的结晶动力学过程,进而影响器件的发光性能。基于
o
⁃FPEABr,我们制备出高效的绿光和蓝光PeLEDs。其中绿光器件的最大外量子效率(EQE)达到了10.27%,发光峰位于521 nm;而蓝光器件的最大EQE也达到了8.88%,发光峰位于488 nm。
During the past few years, the performance of perovskite light-emitting diodes(PeLEDs) has been greatly improved. Constructing quasi-2D perovskites with quantum wells is an effective approach to develop high performance PeLEDs. And the organic cations with large size are crucial to quasi-2D perovskites, which play an important role in regulating the film structures and optoelectronic properties of quasi-2D perovskites. Here we incorporated 2-fluorophenethylammonium bromide (
ortho
-substituted
o
-FPEABr) and 4-fluorophenethylammonium bromide(
para
-substituted
p
-FPEABr) into cesium lead halides to prepare quasi-2D perovskite films by one-step method without antisolvent for PeLEDs, and studied the effect of the fluorine substituted organic cations on the phase distribution and device performance. It was found that
p
-FPEABr allowed the quasi-2D perovskites to form abundant low-n phases, especially the 2D phases(
n
=1) with strong exciton-phonon coupling, and a few high-n phases. On the contrary, the incorporation of
o
-FPEABr suppressed the formation of low-n phases and promoted the formation of high-n phases, which is conducive to reduce non-radiative recombination and improve radiative recombination. The determined formation energies indicated that the low-n phases based on
p
-FPEABr show higher thermodynamic stability than those based on
o
-FPEABr, leading to the difference of phase distribution in the quasi-2D perovskite films. This demonstrated that changing the fluorine substituted position in organic cations can regulate the crystallization kinetic of quasi-2D perovskites, and then affect the device performance. Based on
o
-FPEABr, efficient green and blue PeLEDs were fabricated, a green device with emission peak at 521 nm achieved the maximum external quantum efficiency(EQE) of 10.27%, and a blue device with emission peak at 488 nm showed the maximum EQE of 8.88%.
准二维钙钛矿有机阳离子氟代苯乙胺发光二极管
quasi-2D perovskitesorganic cationsfluorine substituted phenylethylaminelight-emitting diodes
STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341-344. doi: 10.1126/science.1243982http://dx.doi.org/10.1126/science.1243982
CHEN Z M, LI Z C, HOPPER T R, et al. Materials, photophysics and device engineering of perovskite light-emitting diodes [J]. Rep. Prog. Phys., 2021, 84(4): 046401-1-45. doi: 10.1088/1361-6633/abefbahttp://dx.doi.org/10.1088/1361-6633/abefba
JI K Y, ANAYA M, ABFALTERER A, et al. Halide perovskite light-emitting diode technologies [J]. Adv. Opt. Mater., 2021, 9(18): 2002128-1-20. doi: 10.1002/adom.202002128http://dx.doi.org/10.1002/adom.202002128
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562(7726): 249-253. doi: 10.1038/s41586-018-0576-2http://dx.doi.org/10.1038/s41586-018-0576-2
SCHÜNEMANN S, BRITTMAN S, CHEN K, et al. Halide perovskite 3D photonic crystals for distributed feedback lasers [J]. ACS Photonics, 2017, 4(10): 2522-2528. doi: 10.1021/acsphotonics.7b00780http://dx.doi.org/10.1021/acsphotonics.7b00780
CHIN X Y, CORTECCHIA D, YIN J, et al. Lead iodide perovskite light-emitting field-effect transistor [J]. Nat. Commun., 2015, 6: 7383-1-9. doi: 10.1038/ncomms8383http://dx.doi.org/10.1038/ncomms8383
ZHANG H M, LIN H, LIANG C J, et al. Organic-inorganic perovskite light-emitting electrochemical cells with a large capacitance [J]. Adv. Funct. Mater., 2015, 25(46): 7226-7232. doi: 10.1002/adfm.201502962http://dx.doi.org/10.1002/adfm.201502962
宋宏伟, 徐文. 钙钛矿发光-光电器件中的光谱调控 [J]. 发光学报, 2021, 42(5): 575-579. doi: 10.37188/CJL.20210177http://dx.doi.org/10.37188/CJL.20210177
SONG H W, XU W. Spectra control of perovskite luminescence and optoelectronic devices [J]. Chin. J. Lumin., 2021, 42(5): 575-579. (in Chinese). doi: 10.37188/CJL.20210177http://dx.doi.org/10.37188/CJL.20210177
刘王宇, 陈斐, 孔淑祺, 等. 全无机钙钛矿量子点的合成、性质及发光二极管应用进展 [J]. 发光学报, 2020, 41(2): 117-133. doi: 10.3788/fgxb20204102.0117http://dx.doi.org/10.3788/fgxb20204102.0117
LIU W Y, CHEN F, KONG S Q, et al. Synthesis, properties and application of all-inorganic perovskite quantum dots [J]. Chin. J. Lumin., 2020, 41(2): 117-133. (in Chinese). doi: 10.3788/fgxb20204102.0117http://dx.doi.org/10.3788/fgxb20204102.0117
ANDRIČEVIĆ P, METTAN X, KOLLÁR M, et al. Light-emitting electrochemical cells of single crystal hybrid halide perovskite with vertically aligned carbon nanotubes contacts [J]. ACS Photonics, 2019, 6(4): 967-975. doi: 10.1021/acsphotonics.8b01653http://dx.doi.org/10.1021/acsphotonics.8b01653
ZHU L, CAO H, XUE C, et al. Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes [J]. Nat. Commun., 2021, 12(1): 5081-1-8. doi: 10.1038/s41467-021-25407-8http://dx.doi.org/10.1038/s41467-021-25407-8
WANG Y K, YUAN F L, DONG Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized Α-CsPbI3 perovskite [J]. Angew. Chem. Int. Ed., 2021, 60(29): 16164-16170. doi: 10.1002/anie.202104812http://dx.doi.org/10.1002/anie.202104812
LIU Z, QIU W D, PENG X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33(43): 2103268-1-9. doi: 10.1002/adma.202103268http://dx.doi.org/10.1002/adma.202103268
郑春波, 郑鑫, 冯晨, 等. 基于LiF修饰层的喷墨打印钙钛矿发光二极管 [J]. 发光学报, 2021, 42(5): 565-574. doi: 10.37188/CJL.20210058http://dx.doi.org/10.37188/CJL.20210058
ZHENG C B, ZHENG X, FENG C, et al. Inkjet printed perovskite light-emitting diode based on LiF modification layer [J]. Chin. J. Lumin., 2021, 42(5): 565-574. (in Chinese). doi: 10.37188/CJL.20210058http://dx.doi.org/10.37188/CJL.20210058
刘欢, 毕文涛, 高逢强, 等. MA0.6Cs0.4PbBr3钙钛矿发光二极管瞬态电致发光研究 [J]. 发光学报, 2019, 40(1): 89-96. doi: 10.3788/fgxb20194001.0089http://dx.doi.org/10.3788/fgxb20194001.0089
LIU H, BI W T, GAO F Q, et al. Investigation on transient electroluminescence from perovskite light emitting diode based on MA0.6Cs0.4PbBr3 [J]. Chin. J. Lumin., 2019, 40(1): 89-96. (in Chinese). doi: 10.3788/fgxb20194001.0089http://dx.doi.org/10.3788/fgxb20194001.0089
王志斌, 朱晓东, 贾浩然, 等. 蓝光钙钛矿发光二极管: 从材料制备到器件优化 [J]. 发光学报, 2020, 41(8): 879-898. doi: 10.37188/fgxb20204108.0879http://dx.doi.org/10.37188/fgxb20204108.0879
WANG Z B, ZHU X D, JIA H R, et al. Blue perovskite light-emitting diodes: from material preparation to device optimization [J]. Chin. J. Lumin., 2020, 41(8): 879-898. (in Chinese). doi: 10.37188/fgxb20204108.0879http://dx.doi.org/10.37188/fgxb20204108.0879
SHEN Y, WU H Y, LI Y Q, et al. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2021, 31(45): 2103870-1-8. doi: 10.1002/adfm.202103870http://dx.doi.org/10.1002/adfm.202103870
XING G C, WU B, WU X Y, et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence [J]. Nat. Commun., 2017, 8: 14558-1-9. doi: 10.1038/ncomms14558http://dx.doi.org/10.1038/ncomms14558
JIANG Y Z, CUI M H, LI S S, et al. Reducing the impact of auger recombination in quasi-2D perovskite light-emitting diodes [J]. Nat. Commun., 2021, 12(1): 336-1-10. doi: 10.1038/s41467-020-20555-9http://dx.doi.org/10.1038/s41467-020-20555-9
PANG P Y, JIN G R, LIANG C, et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes [J]. ACS Nano, 2020, 14(9): 11420-11430. doi: 10.1021/acsnano.0c03765http://dx.doi.org/10.1021/acsnano.0c03765
YU J C, KIM D W, KIM D B, et al. Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes [J]. Nanoscale, 2017, 9(5): 2088-2094. doi: 10.1039/c6nr08158dhttp://dx.doi.org/10.1039/c6nr08158d
肖毅, 李丹阳, 罗宇, 等. 共掺Rb+和Zn2+蓝光钙钛矿量子点发光二极管研究 [J]. 发光学报, 2022, 43(6): 901-910. doi: 10.37188/cjl.20220097http://dx.doi.org/10.37188/cjl.20220097
XIAO Y, LI D Y, LUO Y, et al. Research on blue perovskite quantum dot light emitting diodes co-doped with rubidium and zinc ions [J]. Chin. J. Lumin., 2022, 43(6): 901-910. (in Chinese). doi: 10.37188/cjl.20220097http://dx.doi.org/10.37188/cjl.20220097
LIU S, GUAN Y J, SHENG Y S, et al. A review on additives for halide perovskite solar cells [J]. Adv. Energy Mater., 2020, 10(13): 1902492-1-28. doi: 10.1002/aenm.201902492http://dx.doi.org/10.1002/aenm.201902492
QIN C J, MATSUSHIMA T, POTSCAVAGE JR W J, et al. Triplet management for efficient perovskite light-emitting diodes [J]. Nat. Photonics, 2020, 14(2): 70-75. doi: 10.1038/s41566-019-0545-9http://dx.doi.org/10.1038/s41566-019-0545-9
LIANG D, PENG Y L, FU Y P, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates [J]. ACS Nano, 2016, 10(7): 6897-6904. doi: 10.1021/acsnano.6b02683http://dx.doi.org/10.1021/acsnano.6b02683
YUAN M J, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes [J]. Nat. Nanotechnol., 2016, 11(10): 872-877. doi: 10.1038/nnano.2016.110http://dx.doi.org/10.1038/nnano.2016.110
WARBY J H, WENGER B, RAMADAN A J, et al. Revealing factors influencing the operational stability of perovskite light-emitting diodes [J]. ACS Nano, 2020, 14(7): 8855-8865. doi: 10.1021/acsnano.0c03516http://dx.doi.org/10.1021/acsnano.0c03516
FENG W H, TAN Y, YANG M F, et al. Small amines bring big benefits to perovskite-based solar cells and light-emitting diodes [J]. Chem, 2022, 8(2): 351-383. doi: 10.1016/j.chempr.2021.11.010http://dx.doi.org/10.1016/j.chempr.2021.11.010
LIU C, YANG Y, RAKSTYS K, et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules [J]. Nat. Commun., 2021, 12(1): 6394-1-9. doi: 10.1038/s41467-021-26754-2http://dx.doi.org/10.1038/s41467-021-26754-2
HU J, OSWALD I W H, STUARD S J, et al. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites [J]. Nat. Commun., 2019, 10(1): 1276-1-11. doi: 10.1038/s41467-019-08980-xhttp://dx.doi.org/10.1038/s41467-019-08980-x
ZHANG T, NAKAJIMA T, CAO H H, et al. Controlling quantum-well width distribution and crystal orientation in two-dimensional tin halide perovskites via a strong interlayer electrostatic interaction [J]. ACS Appl. Mater. Interfaces, 2021, 13(42): 49907-49915. doi: 10.1021/acsami.1c14167http://dx.doi.org/10.1021/acsami.1c14167
王松, 侯有政, 张帆, 等. 钙钛矿太阳能电池中钝化层对缺陷复合行为的影响 [J]. 发光学报, 2021, 42(7): 1029-1039.
WANG S, HOU Y Z, ZHANG F, et al. Effect of passivation layer on trap assisted recombination in inverted perovskite solar cells [J]. Chin. J. Lumin., 2021, 42(7): 1029-1039. (in Chinese)
ZHOU Q, XIONG Q, ZHANG Z L, et al. Fluoroaromatic cation-assisted planar junction perovskite solar cells with improved VOC and stability: the role of fluorination position [J]. Sol. RRL, 2020, 4(7): 2000107-1-10. doi: 10.1002/solr.202000107http://dx.doi.org/10.1002/solr.202000107
JIN G R, LIU T H, LI Y Z, et al. Low-dimensional phase suppression and defect passivation of quasi-2D perovskites for efficient electroluminescence and low-threshold amplified spontaneous emission [J]. Nanoscale, 2022, 14(3): 919-929. doi: 10.1039/d1nr06549ahttp://dx.doi.org/10.1039/d1nr06549a
RADEMEYER M. 2-phenylethylammonium bromide [J]. Acta Cryst., 2007, E63: o221-o223. doi: 10.1107/s1600536806051488http://dx.doi.org/10.1107/s1600536806051488
GUO Z Y, ZHANG Y, WANG B Z, et al. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes [J]. Adv. Mater., 2021, 33(40): 2102246-1-10. doi: 10.1002/adma.202102246http://dx.doi.org/10.1002/adma.202102246
LI M L, GAO Q G, LIU P, et al. Amplified spontaneous emission based on 2D ruddlesden-popper perovskites [J]. Adv. Funct. Mater., 2018, 28(17): 1707006-1-9. doi: 10.1002/adfm.201707006http://dx.doi.org/10.1002/adfm.201707006
CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J]. Science, 2015, 350(6265): 1222-1225. doi: 10.1126/science.aad1818http://dx.doi.org/10.1126/science.aad1818
0
Views
480
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution