浏览全部资源
扫码关注微信
北京科技大学 材料科学与工程学院, 北京 100083
Published:05 September 2022,
Received:11 May 2022,
Revised:29 May 2022,
扫 描 看 全 文
王淑欣,宋振,刘泉林.Ce3+/Eu2+掺杂无机发光材料构效关系与唯象理论[J].发光学报,2022,43(09):1319-1339.
WANG Shu-xin,SONG Zhen,LIU Quan-lin.Structure-property Correlation and Phenomenological Theory in Ce3+/Eu2+-doped Inorganic Luminescent Materials[J].Chinese Journal of Luminescence,2022,43(09):1319-1339.
王淑欣,宋振,刘泉林.Ce3+/Eu2+掺杂无机发光材料构效关系与唯象理论[J].发光学报,2022,43(09):1319-1339. DOI: 10.37188/CJL.20220191.
WANG Shu-xin,SONG Zhen,LIU Quan-lin.Structure-property Correlation and Phenomenological Theory in Ce3+/Eu2+-doped Inorganic Luminescent Materials[J].Chinese Journal of Luminescence,2022,43(09):1319-1339. DOI: 10.37188/CJL.20220191.
Ce
3+
/Eu
2+
掺杂无机发光材料在照明、显示、监测、示踪、防伪以及信息存储等领域具有重要应用。Ce
3+
/Eu
2+
的5d电子与基质材料中近邻阴离子配体之间存在强交互作用,共价键效应、晶体场劈裂和电声子耦合作用可以有效调控其激发光谱和发射光谱,从而赋予Ce
3+
/Eu
2+
掺杂无机固体高效可调的优异性能。近年来,研究人员研发出了许多Ce
3+
/Eu
2+
掺杂的无机发光材料,并深入研究了其成分、结构与性能之间的关系。本文系统综述了Ce
3+
/Eu
2+
掺杂无机发光材料的构效关系与唯象理论研究进展,详细总结了基质材料组分、晶体结构、局域结构和电子结构对发光性能的影响规律,并对未来发展提出了展望。
Ce
3+
/Eu
2+
-doped inorganic luminescence materials have been well developed as an indispensable component in fields of lighting, display, monitoring, tracing, anti-counterfeiting, and information storage. The f-d transitions from isolated luminescent centers Ce
3+
/Eu
2+
are strongly influenced by the coordinated crystalline environment, under which energy levels of Ce
3+
/Eu
2+
may be split and shifted due to covalency effect, crystal field splitting, and electron-phonon coupling, resulting in their highly tunable luminescence properties. To date, researchers have developed many high-performance Ce
3+
/Eu
2+
-doped luminescent materials, and a series of sound theories have been established to gain insight into the composition-structure-property correlations. Herein, we review the current progress in Ce
3+
/Eu
2+
-doped phosphors, focusing on composition-structure-property correlation and phenomenological theory. Particular attention is devoted to overviewing the effect of the local structure and electronic structure on the luminescence property. Finally, an outlook toward potential theory developments is proposed.
Ce3+/Eu2+无机发光材料构效关系唯象理论局域结构电子结构
Ce3+/Eu2+inorganic luminescence materialsstructure-property correlationphenomenological theorylocal structureelectronic structure
KANJI B, AKIRA D, MOTOKAZU Y. Practical-uses and applications of highbright three-primary color LED lamps [J]. J. IIEEJ, 1996, 25(3): 290-297.
UHEDA K, HIROSAKI N, YAMAMOTO Y, et al. Luminescence properties of a red phosphor, CaAlSiN3∶Eu2+, for white light-emitting diodes [J]. Electrochem. Solid⁃State Lett., 2006, 9(4): H22-1-5. doi: 10.1149/1.2173192http://dx.doi.org/10.1149/1.2173192
HIROSAKI N, XIE R J, KIMOTO K, et al. Characterization and properties of green-emitting β-SiAlON∶Eu2+ powder phosphors for white light-emitting diodes [J]. Appl. Phys. Lett., 2005, 86(21): 211905-1-3. doi: 10.1063/1.1935027http://dx.doi.org/10.1063/1.1935027
ZHAO M, LIAO H X, NING L X, et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2∶Eu2+ phosphor for backlight display application [J]. Adv. Mater., 2018, 30(38): 1802489-1-7. doi: 10.1002/adma.201802489http://dx.doi.org/10.1002/adma.201802489
DORENBOS P. A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds [J]. ECS J. Solid State Sci. Technol., 2013, 2(2): R3001-R3011. doi: 10.1149/2.001302jsshttp://dx.doi.org/10.1149/2.001302jss
WANG S X, SONG Z, KONG Y W, et al. Crystal field splitting of 4fn-15d-levels of Ce3+ and Eu2+ in nitride compounds [J]. J. Lumin., 2018, 194: 461-466. doi: 10.1016/j.jlumin.2017.10.073http://dx.doi.org/10.1016/j.jlumin.2017.10.073
WANG S X, SONG Z, KONG Y W, et al. Relationship of Stokes shift with composition and structure in Ce3+/Eu2+-doped inorganic compounds [J]. J. Lumin., 2019, 212: 250-263. doi: 10.1016/j.jlumin.2019.04.036http://dx.doi.org/10.1016/j.jlumin.2019.04.036
CUI D P, SONG Z, XIA Z G, et al. Luminescence tuning, thermal quenching, and electronic structure of narrow-band red-emitting nitride phosphors [J]. Inorg. Chem., 2017, 56(19): 11837-11844. doi: 10.1021/acs.inorgchem.7b01816http://dx.doi.org/10.1021/acs.inorgchem.7b01816
KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor [J]. Nat. Mater., 2017, 16(5): 543-550. doi: 10.1038/nmat4843http://dx.doi.org/10.1038/nmat4843
XIE R J, LI Y Q, HIROSAKI N, et al. Nitride Phosphors and Solid⁃state Lighting [M]. Boca Raton: CAC Press, 2011.
BLASSE G, BRIL A. A new phosphor for flying‐spot cathode‐ray tubes for color television: yellow‐emitting Y3Al5O12Ce3+ [J]. Appl. Phys. Lett., 1967, 11(2): 53-55. doi: 10.1063/1.1755025http://dx.doi.org/10.1063/1.1755025
WATANABE H, KIJIMA N. Crystal structure and luminescence properties of SrxCa1-xAlSiN3∶Eu2+ mixed nitride phosphors [J]. J. Alloys Compd., 2009, 475(1-2): 434-439. doi: 10.1016/j.jallcom.2008.07.054http://dx.doi.org/10.1016/j.jallcom.2008.07.054
BACHMANN V, RONDA C, OECKLER O, et al. Color point tuning for (Sr,Ca,Ba)Si2O2N2∶Eu2+ for white light LEDs [J]. Chem. Mater., 2009, 21(2): 316-325. doi: 10.1021/cm802394whttp://dx.doi.org/10.1021/cm802394w
KIM J S, PARK Y H, KIM S M, et al. Temperature-dependent emission spectra of M2SiO4∶Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs [J]. Solid State Commun., 2005, 133(7): 445-448. doi: 10.1016/j.ssc.2004.12.002http://dx.doi.org/10.1016/j.ssc.2004.12.002
HE L Z, SONG Z, XIANG Q C, et al. Relationship between thermal quenching of Eu2+ luminescence and cation ordering in (Ba1-xSrx)2SiO4∶Eu phosphors [J]. J. Lumin., 2016, 180: 163-168. doi: 10.1016/j.jlumin.2016.08.031http://dx.doi.org/10.1016/j.jlumin.2016.08.031
PARK J K, CHOI K J, YEON J H, et al. Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3SiO5∶Eu phosphor [J]. Appl. Phys. Lett., 2006, 88(4): 043511-1-3. doi: 10.1063/1.2166471http://dx.doi.org/10.1063/1.2166471
徐叙瑢, 苏勉曾. 发光学与发光材料 [M]. 北京: 化学工业出版社, 2004.
XU X R, SU M Z. Luminescence and Luminescent Materials [M]. Beijing: Chemical Industry Press, 2004. (in Chinese)
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds [J]. Phys. Rev. B, 2000, 62(23): 15640-15649. doi: 10.1103/physrevb.62.15640http://dx.doi.org/10.1103/physrevb.62.15640
DE JONG M, SEIJO L, MEIJERINK A, et al. Resolving the ambiguity in the relation between Stokes shift and Huang⁃Rhys parameter [J]. Phys. Chem. Chem. Phys., 2015, 17(26): 16959-16969. doi: 10.1039/c5cp02093jhttp://dx.doi.org/10.1039/c5cp02093j
TANNER P A. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium [J]. Chem. Soc. Rev., 2013, 42(12): 5090-5101. doi: 10.1039/c3cs60033ehttp://dx.doi.org/10.1039/c3cs60033e
AULL B F, JENSSEN H P. Impact of ion-host interactions on the 5d-to-4f spectra of lanthanide rare-earth-metal ions. Ⅰ. A phenomenological crystal-field model [J]. Phys. Rev. B, 1986, 34(10): 6640-6646. doi: 10.1103/physrevb.34.6640http://dx.doi.org/10.1103/physrevb.34.6640
MORRISON C A. Host dependence of the rare‐earth ion energy separation 4f N‐4f N-1nl [J]. J. Chem. Phys., 1980, 72(2): 1001-1002. doi: 10.1063/1.439265http://dx.doi.org/10.1063/1.439265
DORENBOS P. Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity [J]. Phys. Rev. B, 2002, 65(23): 235110-1-6. doi: 10.1103/physrevb.65.235110http://dx.doi.org/10.1103/physrevb.65.235110
WANG T, XIA Z G, XIANG Q C, et al. Relationship of 5d-level energies of Ce3+ with the structure and composition of nitride hosts [J]. J. Lumin., 2015, 166: 106-110. doi: 10.1016/j.jlumin.2015.05.017http://dx.doi.org/10.1016/j.jlumin.2015.05.017
WANG S X, SONG Z, KONG Y W, et al. 5d-level centroid shift and coordination number of Ce3+ in nitride compounds [J]. J. Lumin., 2018, 200: 35-42. doi: 10.1016/j.jlumin.2018.03.079http://dx.doi.org/10.1016/j.jlumin.2018.03.079
DORENBOS P. Ce3+ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds [J]. J. Lumin., 2013, 135: 93-104. doi: 10.1016/j.jlumin.2012.09.034http://dx.doi.org/10.1016/j.jlumin.2012.09.034
DORENBOS P. Crystal field splitting of lanthanide 4fn-1 5d-levels in inorganic compounds [J]. J. Alloys Compd., 2002, 341(1-2): 156-159. doi: 10.1016/s0925-8388(02)00056-7http://dx.doi.org/10.1016/s0925-8388(02)00056-7
DORENBOS P. Relation between Eu2+ and Ce3+ f↔d-transition energies in inorganic compounds [J]. J. Phys. Condens. Matter, 2003, 15(27): 4797-4807. doi: 10.1088/0953-8984/15/27/311http://dx.doi.org/10.1088/0953-8984/15/27/311
LIU S Q, ZHANG S Y, MAO N, et al. Broadband deep‐red‐to‐near‐infrared emission from Mn2+ in strong crystal‐field of nitride MgAlSiN3 [J]. J. Am. Ceram. Soc., 2020, 103(12): 6793-6800. doi: 10.1111/jace.17304http://dx.doi.org/10.1111/jace.17304
GÖRLLER-WALRAND C, BINNEMANS K. Rationalization of crystal-field parametrization [J]. Handb. Phys. Chem. Rare Earths, 1996, 23: 121-283. doi: 10.1016/s0168-1273(96)23006-5http://dx.doi.org/10.1016/s0168-1273(96)23006-5
SONG Z, XIA Z G, LIU Q L. Insight into the relationship between crystal structure and crystal-field splitting of Ce3+ doped garnet compounds [J]. J. Phys. Chem. C, 2018, 122(6): 3567-3574. doi: 10.1021/acs.jpcc.7b12826http://dx.doi.org/10.1021/acs.jpcc.7b12826
SONG Z, LIU Q L. Effect of polyhedron deformation on the 5d energy level of Ce3+ in lanthanide aluminum perovskites [J]. Phys. Chem. Chem. Phys., 2019, 21(5): 2372-2377. doi: 10.1039/c8cp06052ehttp://dx.doi.org/10.1039/c8cp06052e
SONG Z, ZHOU D D, LIU Q L. Tolerance factor and phase stability of the garnet structure [J]. Acta Crystallogr. Sect. C Struct. Chem., 2019, 75(10): 1353-1358. doi: 10.1107/s2053229619011975http://dx.doi.org/10.1107/s2053229619011975
SONG Z, LIU Q L. Effects of neighboring polyhedron competition on the 5d level of Ce3+ in lanthanide garnets [J]. J. Phys. Chem. C, 2019, 123(14): 8656-8662. doi: 10.1021/acs.jpcc.9b00395http://dx.doi.org/10.1021/acs.jpcc.9b00395
SONG Z, LIU Q L. Structural indicator to characterize the crystal-field splitting of Ce3+ in garnets [J]. J. Phys. Chem. C, 2020, 124(1): 870-873. doi: 10.1021/acs.jpcc.9b09322http://dx.doi.org/10.1021/acs.jpcc.9b09322
SONG Z, LIU Q L. Effect of nitrogen substitution on luminescence tuning in garnets [J]. Phys. Chem. Chem. Phys., 2020, 22(17): 9513-9517. doi: 10.1039/d0cp00586jhttp://dx.doi.org/10.1039/d0cp00586j
ETOURNEAU J, PORTIER J, MÉNIL F. The role of the inductive effect in solid state chemistry: how the chemist can use it to modify both the structural and the physical properties of the materials [J]. J. Alloys Compd., 1992, 188: 1-7. doi: 10.1016/0925-8388(92)90635-mhttp://dx.doi.org/10.1016/0925-8388(92)90635-m
NOLL W. The silicate bond from the standpoint of electronic theory [J]. Angew. Chem. Int. Ed., 1963, 2(2): 73-80. doi: 10.1002/anie.196300731http://dx.doi.org/10.1002/anie.196300731
XIAO W G, WU D, ZHANG L L, et al. The inductive effect of neighboring cations in tuning luminescence properties of the solid solution phosphors [J]. Inorg. Chem., 2017, 56(16): 9938-9945. doi: 10.1021/acs.inorgchem.7b01457http://dx.doi.org/10.1021/acs.inorgchem.7b01457
KONG Y W, SONG Z, WANG S X, et al. The inductive effect in nitridosilicates and oxysilicates and its effects on 5d energy levels of Ce3+ [J]. Inorg. Chem., 2018, 57(4): 2320-2331. doi: 10.1021/acs.inorgchem.7b03253http://dx.doi.org/10.1021/acs.inorgchem.7b03253
KONG Y W, SONG Z, WANG S X, et al. Charge transfer, local structure, and the inductive effect in rare-earth-doped inorganic solids [J]. Inorg. Chem., 2018, 57(19): 12376-12383. doi: 10.1021/acs.inorgchem.8b02141http://dx.doi.org/10.1021/acs.inorgchem.8b02141
LEACH M R. Concerning electronegativity as a basic elemental property and why the periodic table is usually represented in its medium form [J]. Found. Chem., 2013, 15(1): 13-29. doi: 10.1007/s10698-012-9151-3http://dx.doi.org/10.1007/s10698-012-9151-3
HE L Z, SONG Z, JIA X H, et al. Control of luminescence in Eu2+-doped orthosilicate-orthophosphate phosphors by chainlike polyhedra and electronic structures [J]. Inorg. Chem., 2018, 57(2): 609-616. doi: 10.1021/acs.inorgchem.7b02431http://dx.doi.org/10.1021/acs.inorgchem.7b02431
HENDERSON B, IMBUSCH G F. Optical Spectroscopy of Inorganic Solids [M]. Oxford: Clarendon Press, 1989.
KOTTAISAMY M, JAGANNATHAN R, JEYAGOPAL P, et al. Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH- [J]. J. Phys. D Appl. Phys., 1994, 27(10): 2210-2215. doi: 10.1088/0022-3727/27/10/034http://dx.doi.org/10.1088/0022-3727/27/10/034
NAZAROV M, TSUKERBLAT B, NOH D Y. Electron⁃vibrational interaction in 4f‐5d optical transitions in Ba, Ca, Sr thiogallates doped with Eu2+ ions [J]. J. Lumin., 2008, 128(9): 1533-1540. doi: 10.1016/j.jlumin.2008.02.008http://dx.doi.org/10.1016/j.jlumin.2008.02.008
CHEN W, SAMMYNAIKEN R, HUANG Y N, et al. Crystal field, phonon coupling and emission shift of Mn2+ in ZnS∶Mn nanoparticles [J]. J. Appl. Phys., 2001, 89(2): 1120-1129. doi: 10.1063/1.1332795http://dx.doi.org/10.1063/1.1332795
ERMOLOVICH I B, MATVIEVSKAJA G I, SHEINKMAN M K. Electron-phonon interactions at radiative carrier capture on deep centers in cadmium sulfide single crystals [J]. J. Lumin., 1975, 10(1): 58-68. doi: 10.1016/0022-2313(75)90032-0http://dx.doi.org/10.1016/0022-2313(75)90032-0
BLASSE G. Interaction between optical centers and their surroundings: an inorganic chemist's approach [J]. Adv. Inorg. Chem., 1990, 35: 319-402. doi: 10.1016/s0898-8838(08)60165-8http://dx.doi.org/10.1016/s0898-8838(08)60165-8
BLASSE G, VAN VLIET J P M, VERWEY J W M, et al. Luminescence of Pr3+ in scandium borate (ScBo3) and the host lattice dependence of the stokes shift [J]. J. Phys. Chem. Solids, 1989, 50(6): 583-585. doi: 10.1016/0022-3697(89)90451-4http://dx.doi.org/10.1016/0022-3697(89)90451-4
DING M Y, CHEN T J, LU C H, et al. Preparation and upconversion luminescence properties of hexagonal NaYF4∶ Yb3+, Er3+ microparticles [J]. J. Nanjing Technol. Univ. (Nat. Sci. Ed.), 2015, 37(2): 11-16. doi: 10.1016/j.apsusc.2015.01.240http://dx.doi.org/10.1016/j.apsusc.2015.01.240
YAMASHITA N, HARADA O, NAKAMURA K. Photoluminescence spectra of Eu2+ centers in Ca(S, Se)∶Eu and Sr(S, Se)∶Eu [J]. Jpn. J. Appl. Phys., 1995, 34(10R): 5539-5545. doi: 10.1143/jjap.34.5539http://dx.doi.org/10.1143/jjap.34.5539
DORENBOS P. Modeling the chemical shift of lanthanide 4f electron binding energies [J]. Phys. Rev. B, 2012, 85(16): 165107-1-10. doi: 10.1103/physrevb.85.165107http://dx.doi.org/10.1103/physrevb.85.165107
WANG T, XIANG Q C, XIA Z G, et al. Evolution of structure and photoluminescence by cation cosubstitution in Eu2+-doped (Ca1-xLix)(Al1-xSi1+x)N3 solid solutions [J]. Inorg. Chem., 2016, 55(6): 2929-2933. doi: 10.1021/acs.inorgchem.5b02845http://dx.doi.org/10.1021/acs.inorgchem.5b02845
LIU X L, SONG Z, KONG Y W, et al. Effects of full-range Eu concentration on Sr2-2xEu2xSi5N8 phosphors: a deep-red emission and luminescent thermal quenching [J]. J. Alloys Compd., 2019, 770: 1069-1077. doi: 10.1016/j.jallcom.2018.08.236http://dx.doi.org/10.1016/j.jallcom.2018.08.236
ROHWER L S, MARTIN J E. Measuring the absolute quantum efficiency of luminescent materials [J]. J. Lumin., 2005, 115(3-4): 77-90. doi: 10.1016/j.jlumin.2005.01.013http://dx.doi.org/10.1016/j.jlumin.2005.01.013
SMET P F, JOOS J J. Stabilizing colour and intensity [J]. Nat. Mater., 2017, 16(5): 500-501. doi: 10.1038/nmat4901http://dx.doi.org/10.1038/nmat4901
UEDA J, AISHIMA K, TANABE S. Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12(x=0, 1, 2, 3) [J]. Opt. Mater., 2013, 35(11): 1952-1957. doi: 10.1016/j.optmat.2012.11.016http://dx.doi.org/10.1016/j.optmat.2012.11.016
DORENBOS P. Thermal quenching of Eu2+ 5d‐4f luminescence in inorganic compounds [J]. J. Phys. Condens. Matter, 2005, 17(50): 8103-8111. doi: 10.1088/0953-8984/17/50/027http://dx.doi.org/10.1088/0953-8984/17/50/027
BLASSE G, GRABMAIER B C. Luminescent Materials [M]. Berlin, Heidelberg: Springer, 1994. doi: 10.1007/978-3-642-79017-1http://dx.doi.org/10.1007/978-3-642-79017-1
BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG∶Ce [J]. Chem. Mater., 2009, 21(10): 2077-2084. doi: 10.1021/cm8030768http://dx.doi.org/10.1021/cm8030768
BRGOCH J, DENBAARS S P, SESHADRI R. Proxies from ab initio calculations for screening efficient Ce3+ phosphor hosts [J]. J. Phys. Chem. C, 2013, 117(35): 17955-17959. doi: 10.1021/jp405858ehttp://dx.doi.org/10.1021/jp405858e
UEDA J, TANABE S, NAKANISHI T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement [J]. J. Appl. Phys., 2011, 110(5): 053102-1-6. doi: 10.1063/1.3632069http://dx.doi.org/10.1063/1.3632069
QIAO J W, ZHAO J, LIU Q L, et al. Recent advances in solid-state LED phosphors with thermally stable luminescence [J]. J. Rare Earths, 2019, 37(6): 565-572. doi: 10.1016/j.jre.2018.11.001http://dx.doi.org/10.1016/j.jre.2018.11.001
QIAO J W, NING L X, MOLOKEEV M S, et al. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence [J]. J. Am. Chem. Soc., 2018, 140(30): 9730-9736. doi: 10.1021/jacs.8b06021http://dx.doi.org/10.1021/jacs.8b06021
UEDA J, KUROISHI K, TANABE S. Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light [J]. Appl. Phys. Lett., 2014, 104(10): 101904-1-4. doi: 10.1063/1.4868138http://dx.doi.org/10.1063/1.4868138
UEDA J, MIYANO S, TANABE S. Formation of deep electron traps by Yb3+ codoping leads to super-long persistent luminescence in Ce3+-doped yttrium aluminum gallium garnet phosphors [J]. ACS Appl. Mater. Interfaces, 2018, 10(24): 20652-20660. doi: 10.1021/acsami.8b02758http://dx.doi.org/10.1021/acsami.8b02758
SONG Z, WANG Z Z, HE L Z, et al. After-glow, luminescent thermal quenching, and energy band structure of Ce-doped yttrium aluminum-gallium garnets [J]. J. Lumin., 2017, 192: 1278-1287. doi: 10.1016/j.jlumin.2017.09.008http://dx.doi.org/10.1016/j.jlumin.2017.09.008
ZHOU D D, WANG Z Z, SONG Z, et al. Enhanced persistence properties through modifying the trap depth and density in Y3Al2Ga3O12∶Ce3+, Yb3+ phosphor by co-doping B3+ [J]. Inorg. Chem., 2019, 58(2): 1684-1689. doi: 10.1021/acs.inorgchem.8b03270http://dx.doi.org/10.1021/acs.inorgchem.8b03270
WANG Z Z, SONG Z, NING L X, et al. Enhanced yellow persistent luminescence in Sr3SiO5∶Eu2+ through Ge incorporation [J]. Inorg. Chem., 2019, 58(13): 8694-8701. doi: 10.1021/acs.inorgchem.9b01020http://dx.doi.org/10.1021/acs.inorgchem.9b01020
WANG Z Z, SONG Z, NING L X, et al. Sunlight-activated yellow long persistent luminescence from Nb-doped Sr3SiO5∶Eu2+ for warm-color mark applications [J]. J. Mater. Chem. C, 2020, 8(3): 1143-1150. doi: 10.1039/c9tc05880jhttp://dx.doi.org/10.1039/c9tc05880j
WANG Z Z, SONG Z, LIU Q L. Orange super-long persistent luminescent materials: (Sr1-xBax)3SiO5∶Eu2+,Nb5+ [J]. Mater. Chem. Front., 2021, 5(1): 333-340. doi: 10.1039/d0qm00488jhttp://dx.doi.org/10.1039/d0qm00488j
LIU X L, SONG Z, WANG S X, et al. The red persistent luminescence of (Sr,Ca)AlSiN3∶Eu2+ and mechanism different to SrAl2O4∶Eu2+, Dy3+ [J]. J. Lumin., 2019, 208: 313-321. doi: 10.1016/j.jlumin.2018.12.069http://dx.doi.org/10.1016/j.jlumin.2018.12.069
WANG S X, LIU X L, QU B Y, et al. Green persistent luminescence and the electronic structure of β-Sialon∶Eu2+ [J]. J. Mater. Chem. C, 2019, 7(40): 12544-12551. doi: 10.1039/c9tc03833ghttp://dx.doi.org/10.1039/c9tc03833g
ZHANG S Y, SONG Z, WANG S X, et al. Red persistent and photostimulable phosphor SrLiAl3N4∶Eu2+ [J]. J. Mater. Chem. C, 2020, 8(14): 4956-4964. doi: 10.1039/d0tc00277ahttp://dx.doi.org/10.1039/d0tc00277a
DORENBOS P. Electronic structure engineering of lanthanide activated materials [J]. J. Mater. Chem., 2012, 22(42): 22344-22349. doi: 10.1039/c2jm34252ahttp://dx.doi.org/10.1039/c2jm34252a
DORENBOS P. Systematic behaviour in trivalent lanthanide charge transfer energies [J]. J. Phys. Condens. Matter, 2003, 15(49): 8417-8434. doi: 10.1088/0953-8984/15/49/018http://dx.doi.org/10.1088/0953-8984/15/49/018
DORENBOS P. Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds [J]. J. Phys. Condens. Matter, 2003, 15(17): 2645-2665. doi: 10.1088/0953-8984/15/17/318http://dx.doi.org/10.1088/0953-8984/15/17/318
DORENBOS P. f→d transition energies of divalent lanthanides in inorganic compounds [J]. J. Phys. Condens. Matter, 2003, 15(3): 575-594. doi: 10.1088/0953-8984/15/3/322http://dx.doi.org/10.1088/0953-8984/15/3/322
DORENBOS P. Charge transfer bands in optical materials and related defect level location [J]. Opt. Mater., 2017, 69: 8-22. doi: 10.1016/j.optmat.2017.03.061http://dx.doi.org/10.1016/j.optmat.2017.03.061
YOU F T, BOS A J J, SHI Q F, et al. Electron transfer process between Ce3+ donor and Yb3 + acceptor levels in the bandgap of Y3Al5O12 (YAG) [J]. J. Phys. Condens. Matter, 2011, 23(21): 215502-1-6. doi: 10.1088/0953-8984/23/21/215502http://dx.doi.org/10.1088/0953-8984/23/21/215502
HERBST J F, WATSON R E, WILKINS J W. Relativistic calculations of 4f excitation energies in the rare-earth metals: further results [J]. Phys. Rev. B, 1978, 17(8): 3089-3098. doi: 10.1103/physrevb.17.3089http://dx.doi.org/10.1103/physrevb.17.3089
DORENBOS P. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds [J]. J. Lumin., 2013, 136: 122-129. doi: 10.1016/j.jlumin.2012.11.030http://dx.doi.org/10.1016/j.jlumin.2012.11.030
DORENBOS P. Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy [J]. Phys. Rev. B, 2013, 87(3): 035118-1-8. doi: 10.1103/physrevb.87.035118http://dx.doi.org/10.1103/physrevb.87.035118
王淑欣, 宋振, 刘泉林. 稀土掺杂无机化合物的电子结构及应用 [J]. 中国稀土学报, 2020, 38(3): 383-396. doi: 10.11785/S1000-4343.20200308http://dx.doi.org/10.11785/S1000-4343.20200308
WANG S X, SONG Z, LIU Q L. Electronic structure of rare-earth-doped inorganic compounds and its applications [J]. J. Chin. Soc. Rare Earths, 2020, 38(3): 383-396. (in Chinese). doi: 10.11785/S1000-4343.20200308http://dx.doi.org/10.11785/S1000-4343.20200308
DORENBOS P. Valence stability of lanthanide ions in inorganic compounds [J]. Chem. Mater., 2005, 17(25): 6452-6456. doi: 10.1021/cm051456ohttp://dx.doi.org/10.1021/cm051456o
FASOLI M, VEDDA A, NIKL M, et al. Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping [J]. Phys. Rev. B, 2011, 84(8): 081102-1-4. doi: 10.1103/physrevb.84.081102http://dx.doi.org/10.1103/physrevb.84.081102
ZHUANG Y X, LV Y, WANG L, et al. Trap depth engineering of SrSi2O2N2∶Ln2+,Ln3+(Ln2+=Yb, Eu; Ln3+=Dy, Ho, Er) persistent luminescence materials for information storage applications [J]. ACS Appl. Mater. Interfaces, 2018, 10(2): 1854-1864. doi: 10.1021/acsami.7b17271http://dx.doi.org/10.1021/acsami.7b17271
KIMOTO K, XIE R J, MATSUI Y, et al. Direct observation of single dopant atom in light-emitting phosphor of β-SiAlON∶Eu2+ [J]. Appl. Phys. Lett., 2009, 94(4): 041908-1-3. doi: 10.1063/1.3076110http://dx.doi.org/10.1063/1.3076110
WANG T, YANG J J, MO Y D, et al. Synthesis, structure and tunable red emissions of Ca(Al/Si)2N2(N1-xOx)∶Eu2+ prepared by alloy-nitridation method [J]. J. Lumin., 2013, 137: 173-179. doi: 10.1016/j.jlumin.2012.12.053http://dx.doi.org/10.1016/j.jlumin.2012.12.053
HE L Z, SONG Z, JIA X H, et al. Consequence of optimal bonding on disordered structure and improved luminescence properties in T-phase (Ba,Ca)2SiO4∶Eu2+ phosphor [J]. Inorg. Chem., 2018, 57(7): 4146-4154. doi: 10.1021/acs.inorgchem.8b00362http://dx.doi.org/10.1021/acs.inorgchem.8b00362
GOLDSCHMIDT V M. Die Gesetze der Krystallochemie [J]. Naturwissenschaften, 1926, 14(21): 477-485. doi: 10.1007/bf01507527http://dx.doi.org/10.1007/bf01507527
SONG Z, LIU Q L. Tolerance factor and phase stability of the normal spinel structure [J]. Cryst. Growth Des., 2020, 20(3): 2014-2018. doi: 10.1021/acs.cgd.9b01673http://dx.doi.org/10.1021/acs.cgd.9b01673
SONG Z, LIU Q L. Tolerance factor, phase stability and order⁃disorder of the pyrochlore structure [J]. Inorg. Chem. Front., 2020, 7(7): 1583-1590. doi: 10.1039/d0qi00016ghttp://dx.doi.org/10.1039/d0qi00016g
ZHAO F Y, CAI H, ZHANG S Y, et al. Octahedron-dependent near-infrared luminescence in Cr3+-activated phosphors [J]. Mater. Today Chem., 2022, 23: 100704-1-8. doi: 10.1016/j.mtchem.2021.100704http://dx.doi.org/10.1016/j.mtchem.2021.100704
ZHAO F Y, CAI H, SONG Z, et al. Structural confinement for Cr3+ activators toward efficient near-infrared phosphors with suppressed concentration quenching [J]. Chem. Mater., 2021, 33(10): 3621-3630. doi: 10.1021/acs.chemmater.1c00441http://dx.doi.org/10.1021/acs.chemmater.1c00441
SEIJO L, BARANDIARÁN Z. 4f and 5d levels of Ce3+ in D2 8-fold oxygen coordination [J]. Opt. Mater., 2013, 35(11): 1932-1940. doi: 10.1016/j.optmat.2012.12.007http://dx.doi.org/10.1016/j.optmat.2012.12.007
WU J L, GUNDIAH G, CHEETHAM A K. Structure‐property correlations in Ce-doped garnet phosphors for use in solid state lighting [J]. Chem. Phys. Lett., 2007, 441(4-6): 250-254. doi: 10.1016/j.cplett.2007.05.023http://dx.doi.org/10.1016/j.cplett.2007.05.023
SONG Z, LIU X L, HE L Z, et al. Correlation between the energy level structure of cerium-doped yttrium aluminum garnet and luminescent behavior at varying temperatures [J]. Mater. Res. Express, 2016, 3(5): 055501-1-8. doi: 10.1088/2053-1591/3/5/055501http://dx.doi.org/10.1088/2053-1591/3/5/055501
LI S X, AMACHRAA M, CHEN C, et al. Efficient near-infrared phosphors discovered by parametrizing the Eu(Ⅱ) 5d-to-4f energy gap [J]. Matter, 2022, 5(6): 1924-1936. doi: 10.1016/j.matt.2022.04.009http://dx.doi.org/10.1016/j.matt.2022.04.009
QIAO J W, ZHOU G J, ZHOU Y Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes [J]. Nat. Commun., 2019, 10(1): 5267-1-7. doi: 10.1038/s41467-019-13293-0http://dx.doi.org/10.1038/s41467-019-13293-0
LIANG J, DEVAKUMAR B, SUN L L, et al. Full-visible-spectrum lighting enabled by an excellent cyan-emitting garnet phosphor [J]. J. Mater. Chem. C, 2020, 8(14): 4934-4943. doi: 10.1039/d0tc00006jhttp://dx.doi.org/10.1039/d0tc00006j
CAO L N, LI W, DEVAKUMAR B, et al. Full-spectrum white light-emitting diodes enabled by an efficient broadband green-emitting CaY2ZrScAl3O12∶Ce3+ garnet phosphor [J]. ACS Appl. Mater. Interfaces, 2022, 14(4): 5643-5652. doi: 10.1021/acsami.1c23286http://dx.doi.org/10.1021/acsami.1c23286
ZHAO M, LIAO H X, MOLOKEEV M S, et al. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition [J]. Light Sci. Appl., 2019, 8(1): 38-1-9. doi: 10.1038/s41377-019-0148-8http://dx.doi.org/10.1038/s41377-019-0148-8
0
Views
990
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution