浏览全部资源
扫码关注微信
燕山大学 环境与化学工程学院, 河北 秦皇岛 066000
Published:05 September 2022,
Received:08 May 2022,
Revised:23 May 2022,
扫 描 看 全 文
朱坤领,游欢欢,高发明等.窄带型Eu2+掺杂荧光粉理论研究进展[J].发光学报,2022,43(09):1405-1412.
ZHU Kun-ling,YOU Huan-huan,GAO Fa-ming,et al.Advances in Theoretical Research on Eu2+ Doped Narrow-band Emitting Fluorescent Materials[J].Chinese Journal of Luminescence,2022,43(09):1405-1412.
朱坤领,游欢欢,高发明等.窄带型Eu2+掺杂荧光粉理论研究进展[J].发光学报,2022,43(09):1405-1412. DOI: 10.37188/CJL.20220189.
ZHU Kun-ling,YOU Huan-huan,GAO Fa-ming,et al.Advances in Theoretical Research on Eu2+ Doped Narrow-band Emitting Fluorescent Materials[J].Chinese Journal of Luminescence,2022,43(09):1405-1412. DOI: 10.37188/CJL.20220189.
近年来,用于制备白光发光二极管(LED)的窄带发射荧光粉在降低能源消耗、提高白光质量以及保持色度稳定等方面具有重要作用,因而被研究者们广泛关注。Eu
2+
离子独特的4f⁃5d跃迁以及与局部环境的依赖性,为制备窄带发射荧光粉提供了可能。但是,目前窄带发射的理论尚不完备,大多Eu
2+
掺杂窄带发射荧光粉的研发均基于大量的重复性试验。本文以位形坐标模型为基础,从理论计算方面对窄带型Eu
2+
掺杂荧光粉的研究进行综述,重点讨论局部配位环境、晶体结构、斯托克斯位移以及耦合声子频率等因素对Eu
2+
离子发射半峰宽(FWHM)的影响,期望为新型Eu
2+
掺杂窄带发射荧光粉提供理论依据。
In recent years, narrow-band emitting phosphors used to fabricate white LEDs play an important role in reducing energy consumption, improving light quality, and maintaining chromaticity stability, and have been widely paid attention to by researchers. The unique character of the 4f-5d transition of Eu
2+
ions with host dependence provides the possibility of the design of Eu
2+
-activated narrow-band emitting phosphors. However, most of the works relies on trial and error, and theoretical understanding is lacking of the emission width of Eu
2+
ions in solids. With this background, here we review the theoretical efforts on this topic in the past ten years. Based on configuration coordinate diagram, the effect of structure rigidity, local environment and phonon frequency on full-width at half-maximum(FWHM) of Eu
2+
ions have been analyzed. The obtained conclusions are expected to give the design clue for the related experimentalist.
Eu2+掺杂荧光粉窄带发射配位环境斯托克斯位移声子频率
Eu2+- doped phosphorsnarrow emissioncoordination environmentStokes shiftphonon frequency
NAKAMURA S, FASOL G. The Blue Laser Diode: GaN Based Light Emitters and Lasers [M]. Berlin: Springer, 1997: 1-24. doi: 10.1007/978-3-662-03462-0_4http://dx.doi.org/10.1007/978-3-662-03462-0_4
XIE R J, LI Y Q, HIROSAKI N, et al. Nitride Phosphors and Solid⁃state Lighting [M]. Boca Raton: CRC Press, 2011: 1-26.
BARDSLEY N, HANSEN M, PATTISON L, et al. Solid⁃state Lighting R&D Plan [R]. Washington: U.S. Department of Energy, 2016: 146.
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment.Ⅰ. Fluoride compounds [J]. Phys. Rev. B, 2000, 62(23): 15640-15649. doi: 10.1103/physrevb.62.15640http://dx.doi.org/10.1103/physrevb.62.15640
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. Ⅱ. Chloride, bromide, and iodide compounds [J]. Phys. Rev. B, 2000, 62(23): 15650-15659. doi: 10.1103/physrevb.62.15650http://dx.doi.org/10.1103/physrevb.62.15650
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. Ⅲ. Oxides containing ionic complexes [J]. Phys. Rev. B, 2000, 64(12): 125117-1-12. doi: 10.1103/physrevb.64.125117http://dx.doi.org/10.1103/physrevb.64.125117
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]∶Eu2+ as a next-generation LED-phosphor material [J]. Nat. Mater., 2014, 13(9): 891-896. doi: 10.1038/nmat4012http://dx.doi.org/10.1038/nmat4012
HOERDER G J, SEIBALD M, BAUMANN D, et al. Sr[Li2Al2O2N2]∶Eu2+—a high performance red phosphor to brighten the future [J]. Nat. Commun., 2019, 10: 1824-1-9. doi: 10.1038/s41467-019-09632-whttp://dx.doi.org/10.1038/s41467-019-09632-w
LIAO H X, ZHAO M, ZHOU Y Y, et al. Polyhedron transformation toward stable narrow-band green phosphors for wide-color-gamut liquid crystal display [J]. Adv. Funct. Mater., 2019, 29(30): 1981988-1-7. doi: 10.1002/adfm.201901988http://dx.doi.org/10.1002/adfm.201901988
QIAO J W, ZHOU G J, ZHOU Y Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes [J]. Nat. Commun., 2019, 10(1): 5267-1-8. doi: 10.1038/s41467-019-13293-0http://dx.doi.org/10.1038/s41467-019-13293-0
ZHAO M, ZHANG Q Y, XIA Z G. Structural engineering of Eu2+-doped silicates phosphors for LED applications [J]. Acc. Mater. Res., 2020, 1(2): 137-145. doi: 10.1021/accountsmr.0c00014http://dx.doi.org/10.1021/accountsmr.0c00014
FANG M H, MARIANO C O M, CHEN P Y, et al. Cuboid-size-controlled color-tunable Eu-doped alkali-lithosilicate phosphors [J]. Chem. Mater., 2020, 32(5): 1748-1759. doi: 10.1021/acs.chemmater.9b04861http://dx.doi.org/10.1021/acs.chemmater.9b04861
FANG M H, MARIANO C O M, CHEN K C, et al. High-performance NaK2Li[Li3SiO4]4∶Eu green phosphor for backlighting light-emitting diodes [J]. Chem. Mater., 2021, 33(5): 1893-1899. doi: 10.1021/acs.chemmater.1c00180http://dx.doi.org/10.1021/acs.chemmater.1c00180
CONDON E. Nuclear motions associated with electron transitions in diatomic molecules [J]. Phys. Rev., 1928, 32(6): 858-872. doi: 10.1103/physrev.32.858http://dx.doi.org/10.1103/physrev.32.858
SEITZ F. Interpretation of the properties of zinc sulphide phosphors [J]. J. Chem. Phys., 1938, 6(8): 454-461. doi: 10.1063/1.1750291http://dx.doi.org/10.1063/1.1750291
JIA Y C, MIGLIO A, PONCÉ S, et al. First-principles study of the luminescence of Eu2+-doped phosphors [J]. Phys. Rev. B, 2017, 96(12): 125132-1-16. doi: 10.1103/physrevb.96.125132http://dx.doi.org/10.1103/physrevb.96.125132
JIA Y C, PONCÉ S, MIGLIO A, et al. Beyond the one-dimensional configuration coordinate model of photoluminescence [J]. Phys. Rev. B, 2019, 100(15): 155109-1-11. doi: 10.1103/physrevb.100.155109http://dx.doi.org/10.1103/physrevb.100.155109
STONEHAM A M, SMOLUCHOWSKI R. Theory of defects in solids: electronic structure of defects in insulators and semiconductors [J]. Phys. Today, 1976, 29(3): 62. doi: 10.1063/1.3023378http://dx.doi.org/10.1063/1.3023378
WANG S X, SONG Z, KONG Y W, et al. Relationship of Stokes shift with composition and structure in Ce3+/Eu2+-doped inorganic compounds [J]. J. Lumin., 2019, 212: 250-263. doi: 10.1016/j.jlumin.2019.04.036http://dx.doi.org/10.1016/j.jlumin.2019.04.036
LI G, LIN C C, CHEN W T, et al. Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms [J]. Chem. Mater., 2014, 26(9): 2991-3001. doi: 10.1021/cm500844vhttp://dx.doi.org/10.1021/cm500844v
ZHANG X J, FANG M H, TSAI Y T, et al. Controlling of structural ordering and rigidity of β-SiAlON∶Eu through chemical cosubstitution to approach narrow-band-emission for light-emitting diodes application [J]. Chem. Mater., 2017, 29(16): 6781-6792. doi: 10.1021/acs.chemmater.7b01697http://dx.doi.org/10.1021/acs.chemmater.7b01697
KIMOTO K, XIE R J, MATSUI Y, et al. Direct observation of single dopant atom in light-emitting phosphor of β-sialon: Eu2+ [J]. Appl. Phys. Lett., 2009, 94(6): 041908-1-3. doi: 10.1063/1.3076110http://dx.doi.org/10.1063/1.3076110
WANG Z B, CHU I H, ZHOU F, et al. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors [J]. Chem. Mater., 2016, 28(11): 4024-4031. doi: 10.1021/acs.chemmater.6b01496http://dx.doi.org/10.1021/acs.chemmater.6b01496
PUST P, HINTZE F, HECHT C, et al. Group (Ⅲ) nitrides M[Mg2Al2N4](M=Ca, Sr, Ba, Eu) and Ba[Mg2Ga2N4]-structural relation and nontypical luminescence properties of Eu2+ doped samples [J]. Chem. Mater., 2014, 26(21): 6113-6119. doi: 10.1021/cm502280phttp://dx.doi.org/10.1021/cm502280p
SCHMIECHEN S, SCHNEIDER H, WAGATHA P, et al. Toward new phosphors for application in illumination-grade white pc-LEDs: the nitridomagnesosilicates Ca[Mg3SiN4]∶Ce3+, Sr[Mg3SiN4]∶Eu2+ and Eu[Mg3SiN4] [J]. Chem. Mater., 2014, 26(8): 2712-2719. doi: 10.1021/cm500610vhttp://dx.doi.org/10.1021/cm500610v
ZHAO M, LIAO H X, NING L X, et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2∶Eu2+ phosphor for backlight display application [J]. Adv. Mater., 2018, 30(38): 1802489-1-7. doi: 10.1002/adma.201802489http://dx.doi.org/10.1002/adma.201802489
ZHAO M, LIAO H X, MOLOKEEV M S, et al. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition [J]. Light Sci. Appl., 2019, 8: 38-1-9. doi: 10.1038/s41377-019-0148-8http://dx.doi.org/10.1038/s41377-019-0148-8
BAUR W H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group [J]. Acta Crystallogr. Sect. B, 1974, 30(5): 1195-1215. doi: 10.1107/s0567740874004560http://dx.doi.org/10.1107/s0567740874004560
ZHUO Y, TEHRANI A M, OLIYNYK A O, et al. Identifying an efficient, thermally robust inorganic phosphor host via machine learning [J]. Nat. Commun., 2018, 9(1): 4377-1-10. doi: 10.1038/s41467-018-06625-zhttp://dx.doi.org/10.1038/s41467-018-06625-z
JIA Y C, PONCÉ S, MIGLIO A, et al. Design rule for the emission linewidth of Eu2+-activated phosphors [J]. J. Lumin., 2020, 224: 117258-1-5. doi: 10.1016/j.jlumin.2020.117258http://dx.doi.org/10.1016/j.jlumin.2020.117258
0
Views
636
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution