浏览全部资源
扫码关注微信
1.国科大杭州高等研究院 物理与光电工程学院, 浙江 杭州 310024
2.中国科学院上海光学精密机械研究所 强场激光物理国家重点实验室, 上海 201800
Published:05 November 2022,
Received:05 May 2022,
Revised:23 May 2022,
移动端阅览
汪俊,周奉献,李骞等.准二维铅基钙钛矿微纳激光器[J].发光学报,2022,43(11):1645-1662.
WANG Jun,ZHOU Feng-xian,LI Qian,et al.Quasi-2D Lead Halide Perovskites for Micro- and Nanolasers[J].Chinese Journal of Luminescence,2022,43(11):1645-1662.
汪俊,周奉献,李骞等.准二维铅基钙钛矿微纳激光器[J].发光学报,2022,43(11):1645-1662. DOI: 10.37188/CJL.20220179.
WANG Jun,ZHOU Feng-xian,LI Qian,et al.Quasi-2D Lead Halide Perovskites for Micro- and Nanolasers[J].Chinese Journal of Luminescence,2022,43(11):1645-1662. DOI: 10.37188/CJL.20220179.
近年来,钙钛矿材料及器件由于其优异的光电特性取得了巨大的研究进展。特别是准二维卤化物钙钛矿材料,因其具有激子结合能大、激子‐光子强耦合和稳定性好等优点,在光电器件领域显示出很大的应用潜力。此外,准二维钙钛矿中自发形成的量子阱结构允许激子能量从小
n
相转移到大
n
相,能够有效促进激子利用率和粒子数反转,这使得准二维钙钛矿材料能够成为激光器中的光学增益介质。本文首先介绍了准二维钙钛矿的晶体结构和优异的光学性能,进而总结了调节准二维钙钛矿晶相结构的几种策略。最后,回顾了准二维钙钛矿微纳激光器的发展,并对准二维钙钛矿材料和激光器件的研究进行了总结和展望。
Perovskite materials and devices have obtained great progress due to their significant optoelectronic properties. Especially, quasi-two-dimensional(2D) halide perovskites have shown promising potential in optoelectronic devices due to their large exciton binding energy, strong exciton-photon coupling and enhanced stability. Moreover, the naturally quantum-well structure of 2D perovskite allows exciton energy transfer from the small-
n
phase to large-
n
phase, promoting exciton utilization and population inversion to achieve lasing as optical gain media. Herein, we will introduce the crystal structure and advanced optical properties of quasi-2D perovskite at first, and then summarize several strategies about regulating crystal orientation of quasi-2D perovskite. Finally, we will review the development of quasi-2D perovskite based micro- and nanolaser, and present a summary and prospect for quasi-2D perovskite materials and laser devices in the future.
准二维钙钛矿晶相调控增益介质激光器
quasi-2D perovskitecrystal orientationgain mediumlaser
CHEN W, SHI Y Q, WANG Y, et al. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86% [J]. Nano Energy, 2020, 68: 104363-1-10. doi: 10.1016/j.nanoen.2019.104363http://dx.doi.org/10.1016/j.nanoen.2019.104363
ZHU P C, GU S, LUO X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer [J]. Adv. Energy Mater., 2020, 10(3): 1903083-1-7. doi: 10.1002/aenm.201903083http://dx.doi.org/10.1002/aenm.201903083
HUI W, YANG Y G, XU Q, et al. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells [J]. Adv. Mater., 2020, 32(4): 1906374-1-9. doi: 10.1002/adma.201906374http://dx.doi.org/10.1002/adma.201906374
RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells [J]. Science, 2018, 361(6408): eaat8235-1-7. doi: 10.1126/science.aat8235http://dx.doi.org/10.1126/science.aat8235
GUAN H L, ZHAO S Y, WANG H X, et al. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag-In-Zn-S for high-CRI white light-emitting diodes [J]. Nano Energy, 2020, 67: 104279-1-9. doi: 10.1016/j.nanoen.2019.104279http://dx.doi.org/10.1016/j.nanoen.2019.104279
LIU Z Z, YANG J, DU J, et al. Robust subwavelength single-mode perovskite nanocuboid laser [J]. ACS Nano, 2018, 12(6): 5923-5931. doi: 10.1021/acsnano.8b02143http://dx.doi.org/10.1021/acsnano.8b02143
CAO Z L, HU F R, ZHANG C F, et al. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review [J]. Adv. Photonics, 2020, 2(5): 054001-1-15. doi: 10.1117/1.ap.2.5.054001http://dx.doi.org/10.1117/1.ap.2.5.054001
WU T Z, LIN Y, HUANG Y M, et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal [J]. Photonics Res., 2021, 9(11): 2132-2143. doi: 10.1364/prj.431095http://dx.doi.org/10.1364/prj.431095
MO Q H, SHI T C, CAI W S, et al. Room temperature synthesis of stable silica-coated CsPbBr3 quantum dots for amplified spontaneous emission [J]. Photonics Res., 2020, 8(10): 1605-1612. doi: 10.1364/prj.399845http://dx.doi.org/10.1364/prj.399845
LI Y, LIANG C, WANG G P, et al. Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells [J]. Photonics Res., 2020, 8(10): A39-A49. doi: 10.1364/prj.398529http://dx.doi.org/10.1364/prj.398529
曾凡菊, 谭永前, 胡伟, 等. Ba2+离子掺杂CsPbBr3蓝光量子点合成及其光学性能 [J]. 发光学报, 2022, 43(1):69-76. doi: 10.37188/cjl.20210323http://dx.doi.org/10.37188/cjl.20210323
ZENG F J, TAN Y Q, HU W, et al. Synthesis and optical properties of barium doped CsPbBr3 blue luminescence quantum dots [J]. Chin. J. Lumin., 2022, 43(1): 69-76. (in Chinese). doi: 10.37188/cjl.20210323http://dx.doi.org/10.37188/cjl.20210323
杨洁, 皮明雨, 张丁可, 等. 低维钙钛矿光电探测器研究进展 [J]. 发光学报, 2021, 42(6):755-773. doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
YANG J, PI M Y, ZHANG D K, et al. Recent progress on low-dimensional perovskite photodetectors [J]. Chin. J. Lumin., 2021, 42(6): 755-773. (in Chinese). doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
ZHAO Y, MA F, GAO F, et al. Research progress in large-area perovskite solar cells [J]. Photonics Res., 2020, 8(7): A1-A15. doi: 10.1364/prj.392996http://dx.doi.org/10.1364/prj.392996
LIU Y, CUI J Y, DU K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures [J]. Nat. Photonics, 2019, 13(11): 760-764. doi: 10.1038/s41566-019-0505-4http://dx.doi.org/10.1038/s41566-019-0505-4
VASHISHTHA P, NG M, SHIVARUDRAIAH S B, et al. High efficiency blue and green light-emitting diodes using Ruddlesden‐Popper inorganic mixed halide perovskites with butylammonium interlayers [J]. Chem. Mater., 2019, 31(1): 83-89.
WANG N N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nat. Photonics, 2016, 10(11): 699-704. doi: 10.1038/nphoton.2016.185http://dx.doi.org/10.1038/nphoton.2016.185
LEE H D, KIM H, CHO H, et al. Efficient Ruddlesden‐Popper perovskite light-emitting diodes with randomly oriented nanocrystals [J]. Adv. Funct. Mater., 2019, 29(27): 1901225-1-9.
LA-PLACA M G, LONGO G, BABAEI A, et al. Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control [J]. Chem. Commun., 2017, 53(62): 8707-8710. doi: 10.1039/c7cc04149ghttp://dx.doi.org/10.1039/c7cc04149g
YANG X L, ZHANG X W, DENG J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation [J]. Nat. Commun., 2018, 9(1): 570-1-8. doi: 10.1038/s41467-018-02978-7http://dx.doi.org/10.1038/s41467-018-02978-7
MENG F Y, LIU X Y, CHEN Y X, et al. Co-interlayer engineering toward efficient green quasi-two-dimensional perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2020, 30(19): 1910167-1-9. doi: 10.1002/adfm.201910167http://dx.doi.org/10.1002/adfm.201910167
CHU Z M, YE Q F, ZHAO Y, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation [J]. Adv. Mater., 2021, 33(18): 2007169-1-9. doi: 10.1002/adma.202007169http://dx.doi.org/10.1002/adma.202007169
HU Z P, LIU Z Z, ZHAN Z J, et al. Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission [J]. Adv. Photonics, 2021, 3(3): 034002-1-23. doi: 10.1117/1.ap.3.3.034002http://dx.doi.org/10.1117/1.ap.3.3.034002
LEYDEN M R, TERAKAWA S, MATSUSHIMA T, et al. Distributed feedback lasers and light-emitting diodes using 1-naphthylmethylamnonium low-dimensional perovskite [J]. ACS Photonics, 2019, 6(2): 460-466. doi: 10.1021/acsphotonics.8b01413http://dx.doi.org/10.1021/acsphotonics.8b01413
WANG C H, DAI G, WANG J H, et al. Low-threshold blue quasi-2D perovskite laser through domain distribution control [J]. Nano Lett., 2022, 22(3): 1338-1344.
ZHANG H H, WU Y S, LIAO Q, et al. A two-dimensional Ruddlesden‐Popper perovskite nanowire laser array based on ultrafast light-harvesting quantum wells [J]. Angew. Chem. Int. Ed., 2018, 57(26): 7748-7752. doi: info:doi/10.1002/anie.201802515http://dx.doi.org/info:doi/10.1002/anie.201802515
ZHAI W H, TIAN C, YUAN K, et al. Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature [J]. Appl. Phys. Lett., 2019, 114(13): 131107-1-4. doi: 10.1063/1.5090569http://dx.doi.org/10.1063/1.5090569
DAS S, GHOLIPOUR S, SALIBA M. Perovskites for laser and detector applications [J]. Energy Environ. Mater., 2019, 2(2): 146-153. doi: 10.1002/eem2.12044http://dx.doi.org/10.1002/eem2.12044
ZHANG S, ZHONG Y G, YANG F, et al. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction [J]. Photonics Res., 2020, 8(11): A72-A90. doi: 10.1364/prj.400259http://dx.doi.org/10.1364/prj.400259
LIU Z Z, HU M C, DU J, et al. Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser [J]. ACS Nano, 2021, 15(4): 6900-6908. doi: 10.1021/acsnano.0c10647http://dx.doi.org/10.1021/acsnano.0c10647
SHANG Q Y, LI M L, ZHAO L Y, et al. Role of the exciton‐polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser [J]. Nano Lett., 2020, 20(9): 6636-6643.
FUJIWARA K, ZHANG S, TAKAHASHI S, et al. Excitation dynamics in layered lead halide perovskite crystal slabs and microcavities [J]. ACS Photonics, 2020, 7(3): 845-852. doi: 10.1021/acsphotonics.0c00038http://dx.doi.org/10.1021/acsphotonics.0c00038
BRENNER P, GLÖCKLER T, RUEDA-DELGADO D, et al. Triple cation mixed-halide perovskites for tunable lasers [J]. Opt. Mater. Express, 2017, 7(11): 4082-4094. doi: 10.1364/ome.7.004082http://dx.doi.org/10.1364/ome.7.004082
SUN W Z, LIU Y L, QU G Y, et al. Lead halide perovskite vortex microlasers [J]. Nat. Commun., 2020, 11(1): 4862-1-7. doi: 10.1038/s41467-020-18669-1http://dx.doi.org/10.1038/s41467-020-18669-1
XING D, LIN C C, HO Y L, et al. Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array [J]. Adv. Funct. Mater., 2021, 31(1): 2006283-1-9. doi: 10.1002/adfm.202006283http://dx.doi.org/10.1002/adfm.202006283
TIAN C, ZHAO S Q, GUO T, et al. Deep-blue DBR laser at room temperature from single-crystalline perovskite thin film [J]. Opt. Mater., 2020, 107: 110130-1-5. doi: 10.1016/j.optmat.2020.110130http://dx.doi.org/10.1016/j.optmat.2020.110130
REN M, CAO S, ZHAO J L, et al. Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes [J]. Nanomicro Lett., 2021, 13(1): 163-1-36. doi: 10.1007/S40820-021-00685-5http://dx.doi.org/10.1007/S40820-021-00685-5
GHIMIRE S, KLINKE C. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications [J]. Nanoscale, 2021, 13(29): 12394-12422. doi: 10.1039/d1nr02769ghttp://dx.doi.org/10.1039/d1nr02769g
SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chem. Rev., 2016, 116(7): 4558-4596. doi: 10.1021/acs.chemrev.5b00715http://dx.doi.org/10.1021/acs.chemrev.5b00715
MA S, CAI M L, CHENG T, et al. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications [J]. Sci. China Mater., 2018, 61(10): 1257-1277. doi: 10.1007/s40843-018-9294-5http://dx.doi.org/10.1007/s40843-018-9294-5
HU T, SMITH M D, DOHNER E R, et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites [J]. J. Phys. Chem. Lett., 2016, 7(12): 2258-2263. doi: 10.1021/acs.jpclett.6b00793http://dx.doi.org/10.1021/acs.jpclett.6b00793
ORTIZ-CERVANTES C, CARMONA-MONROY P, SOLIS-IBARRA D. Two-dimensional halide perovskites in solar cells: 2D or not 2D? [J]. ChemSusChem, 2019, 12(8): 1560-1575. doi: 10.1002/cssc.201802992http://dx.doi.org/10.1002/cssc.201802992
MCCALL K M, LIU Z F, TRIMARCHI G, et al. α-particle detection and charge transport characteristics in the A3M2I9 defect perovskites(A= Cs, Rb; M= Bi, Sb) [J]. ACS Photonics, 2018, 5(9): 3748-3762. doi: 10.1021/acsphotonics.8b00813http://dx.doi.org/10.1021/acsphotonics.8b00813
KARUPPUSWAMY P, BOOPATHI K M, MOHAPATRA A, et al. Role of a hydrophobic scaffold in controlling the crystallization of methylammonium antimony iodide for efficient lead-free perovskite solar cells [J]. Nano Energy, 2018, 45: 330-336. doi: 10.1016/j.nanoen.2017.12.051http://dx.doi.org/10.1016/j.nanoen.2017.12.051
UZURANO G, KUWAHARA N, SAITO T, et al. Orientation control of 2D perovskite in 2D/3D heterostructure by templated growth on 3D perovskite [J]. ACS Mater. Lett., 2022, 4(2): 378-384. doi: 10.1021/acsmaterialslett.1c00709http://dx.doi.org/10.1021/acsmaterialslett.1c00709
LIU P R, YU S W, XIAO S J. Research progress on two-dimensional(2D) halide organic-inorganic hybrid perovskites [J]. Sustainable Energy Fuels, 2021, 5(16): 3950-3978. doi: 10.1039/d1se00589hhttp://dx.doi.org/10.1039/d1se00589h
CAO D H, STOUMPOS C C, FARHA O K, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications [J]. J. Am. Chem. Soc., 2015, 137(24): 7843-7850. doi: 10.1021/jacs.5b03796http://dx.doi.org/10.1021/jacs.5b03796
SMITH I C, HOKE E T, SOLIS-IBARRA D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability [J]. Angew. Chem. Int. Ed., 2014, 53(42): 11232-11235. doi: 10.1002/anie.201406466http://dx.doi.org/10.1002/anie.201406466
PARITMONGKOL W, DAHOD N S, STOLLMANN A, et al. Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites [J]. Chem. Mater., 2019, 31(15): 5592-5607. doi: 10.1021/acs.chemmater.9b01318http://dx.doi.org/10.1021/acs.chemmater.9b01318
AHMAD S, FU P, YU S W, et al. Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability [J]. Joule, 2019, 3(3): 794-806. doi: 10.1016/j.joule.2018.11.026http://dx.doi.org/10.1016/j.joule.2018.11.026
MAO L L, KE W J, PEDESSEAU L, et al. Hybrid Dion-Jacobson 2D lead iodide perovskites [J]. J. Am. Chem. Soc., 2018, 140(10): 3775-3783. doi: 10.1021/jacs.8b00542http://dx.doi.org/10.1021/jacs.8b00542
NAZARENKO O, KOTYRBA M R, WÖRLE M, et al. Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations [J]. Inorg. Chem., 2017, 56(19): 11552-11564. doi: 10.1021/acs.inorgchem.7b01204http://dx.doi.org/10.1021/acs.inorgchem.7b01204
SOE C M M, STOUMPOS C C, KEPENEKIAN M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance [J]. J. Am. Chem. Soc., 2017, 139(45): 16297-16309.
HONG X, ISHIHARA T, NURMIKKO A V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors [J]. Phys. Rev. B, 1992, 45(12): 6961-6964. doi: 10.1103/physrevb.45.6961http://dx.doi.org/10.1103/physrevb.45.6961
GUO Z, WU X X, ZHU T, et al. Electron-phonon scattering in atomically thin 2D perovskites [J]. ACS Nano, 2016, 10(11): 9992-9998. doi: 10.1021/acsnano.6b04265http://dx.doi.org/10.1021/acsnano.6b04265
DAMMAK T, KOUBAA M, BOUKHEDDADEN K, et al. Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial [J]. J. Phys. Chem. C, 2009, 113(44): 19305-19309. doi: 10.1021/jp9057934http://dx.doi.org/10.1021/jp9057934
TRAORE B, PEDESSEAU L, ASSAM L, et al. Composite nature of layered hybrid perovskites: assessment on quantum and dielectric confinements and band alignment [J]. ACS Nano, 2018, 12(4): 3321-3332. doi: 10.1021/acsnano.7b08202http://dx.doi.org/10.1021/acsnano.7b08202
ZIBOUCHE N, ISLAM M S. Structure-electronic property relationships of 2D Ruddlesden‐Popper tin- and lead-based iodide perovskites [J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15328-15337.
WANG K, WU C C, YANG D, et al. Quasi-two-dimensional halide perovskite single crystal photodetector [J]. ACS Nano, 2018, 12(5): 4919-4929. doi: 10.1021/acsnano.8b01999http://dx.doi.org/10.1021/acsnano.8b01999
SICHERT J A, TONG Y, MUTZ N, et al. Quantum size effect in organometal halide perovskite nanoplatelets [J]. Nano Lett., 2015, 15(10): 6521-6527. doi: 10.1021/acs.nanolett.5b02985http://dx.doi.org/10.1021/acs.nanolett.5b02985
LIU J X, LENG J, WU K F, et al. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films [J]. J. Am. Chem. Soc., 2017, 139(4): 1432-1435. doi: 10.1021/jacs.6b12581http://dx.doi.org/10.1021/jacs.6b12581
LI M L, GAO Q G, LIU P, et al. Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites [J]. Adv. Funct. Mater., 2018, 28(17): 1707006-1-9.
ZHANG H H, LIAO Q, WU Y S, et al. 2D Ruddlesden-Popper perovskites microring laser array [J]. Adv. Mater., 2018, 30(15): 1706186-1-8.
BLANCON J C, TSAI H, NIE W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites [J]. Science, 2017, 355(6331): 1288-1292. doi: 10.1126/science.aal4211http://dx.doi.org/10.1126/science.aal4211
EVEN J, PEDESSEAU L, KATAN C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites [J]. ChemPhysChem, 2014, 15(17): 3733-3741. doi: 10.1002/cphc.201402428http://dx.doi.org/10.1002/cphc.201402428
GUO P J, HUANG W, STOUMPOS C C, et al. Hyperbolic dispersion arising from anisotropic excitons in two-dimensional perovskites [J]. Phys. Rev. Lett., 2018, 121(12): 127401-1-6. doi: 10.1103/physrevlett.121.127401http://dx.doi.org/10.1103/physrevlett.121.127401
FANG C, XU M, MA J Q, et al. Large optical anisotropy in two-dimensional perovskite [CH(NH2)2][C(NH2)3] PbI4 with corrugated inorganic layers [J]. Nano Lett., 2020, 20(4): 2339-2347. doi: 10.1021/acs.nanolett.9b04777http://dx.doi.org/10.1021/acs.nanolett.9b04777
SPANOPOULOS I, HADAR I, KE W J, et al. Uniaxial expansion of the 2D Ruddlesden‐Popper perovskite family for improved environmental stability [J]. J. Am. Chem. Soc., 2019, 141(13): 5518-5534. doi: 10.1021/jacs.9b01327http://dx.doi.org/10.1021/jacs.9b01327
RAGHAVAN C M, CHEN T P, LI S S, et al. Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden‐Popper perovskite single crystals [J]. Nano Lett., 2018, 18(5): 3221-3228.
XIAO X, DAI J, FANG Y J, et al. Suppressed ion migration along the in-plane direction in layered perovskites [J]. ACS Energy Lett., 2018, 3(3): 684-688. doi: 10.1021/acsenergylett.8b00047http://dx.doi.org/10.1021/acsenergylett.8b00047
ZHENG H Y, LIU G Z, ZHU L Z, et al. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition [J]. Adv. Energy Mater., 2018, 8(21): 1800051-1-8. doi: 10.1002/aenm.201800051http://dx.doi.org/10.1002/aenm.201800051
LIN Y, BAI Y, FANG Y J, et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures [J]. J. Phys. Chem. Lett., 2018, 9(3): 654-658. doi: 10.1021/acs.jpclett.7b02679http://dx.doi.org/10.1021/acs.jpclett.7b02679
HAN T H, LEE J W, CHOI Y J, et al. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes [J]. Adv. Mater., 2020, 32(1): 1905674-1-10. doi: 10.1002/adma.202070007http://dx.doi.org/10.1002/adma.202070007
CHO J, DUBOSE J T, LE A N T, et al. Suppressed halide ion migration in 2D lead halide perovskites [J]. ACS Mater. Lett., 2020, 2(6): 565-570. doi: 10.1021/acsmaterialslett.0c00124http://dx.doi.org/10.1021/acsmaterialslett.0c00124
HUANG Z R, PROPPE A H, TAN H R, et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability [J]. ACS Energy Lett., 2019, 4(7): 1521-1527. doi: 10.1021/acsenergylett.9b00892http://dx.doi.org/10.1021/acsenergylett.9b00892
ZHANG F, LU H P, TONG J H, et al. Advances in two-dimensional organic-inorganic hybrid perovskites [J]. Energy Environ. Sci., 2020, 13(4): 1154-1186. doi: 10.1039/c9ee03757hhttp://dx.doi.org/10.1039/c9ee03757h
ZHAO R Y, SABATINI R P, ZHU T, et al. Rigid conjugated diamine templates for stable Dion-Jacobson-type two-dimensional perovskites [J]. J. Am. Chem. Soc., 2021, 143(47): 19901-19908. doi: 10.1021/jacs.1c09515http://dx.doi.org/10.1021/jacs.1c09515
ZHANG Q, DUAN J, GUO Q, et al. Thermal-triggered dynamic disulfide bond self-heals inorganic perovskite solar cells [J]. Angew. Chem. Int. Ed., 2022, 61(8): e202116632. doi: 10.1002/anie.202116632http://dx.doi.org/10.1002/anie.202116632
CAO D H, STOUMPOS C C, YOKOYAMA T, et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden‐Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites [J]. ACS Energy Lett., 2017, 2(5): 982-990. doi: 10.1021/acsenergylett.7b00202http://dx.doi.org/10.1021/acsenergylett.7b00202
CHENG G Q, WANG J, YANG R, et al. Tuning crystal orientation and charge transport of quasi-2D perovskites via halogen-substituted benzylammonium for efficient solar cells [J]. J. Energy Chem., 2022, 66: 205-209. doi: 10.1016/j.jechem.2021.07.033http://dx.doi.org/10.1016/j.jechem.2021.07.033
ZHAO F Y, REN A B, LI P H, et al. Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges [J]. ACS Nano, 2022, 16(5): 7116-7143. doi: 10.1021/acsnano.1c11539http://dx.doi.org/10.1021/acsnano.1c11539
SONG J N, ZHOU G Q, CHEN W, et al. Unraveling the crystallization kinetics of 2D perovskites with sandwich-type structure for high-performance photovoltaics [J]. Adv. Mater., 2020, 32(36): 2002784-1-10.
XU Y K, WANG M, LEI Y T, et al. Crystallization kinetics in 2D perovskite solar cells [J]. Adv. Energy Mater., 2020, 10(43): 2002558-1-18. doi: 10.1002/aenm.202002558http://dx.doi.org/10.1002/aenm.202002558
ZHANG J J, ZHANG L Y, LI X H, et al. Binary solvent engineering for high-performance two-dimensional perovskite solar cells [J]. ACS Sustainable Chem. Eng., 2019, 7(3): 3487-3495. doi: 10.1021/acssuschemeng.8b05734http://dx.doi.org/10.1021/acssuschemeng.8b05734
HAMILL J C JR, SCHWARTZ J, LOO Y L. Influence of solvent coordination on hybrid organic-inorganic perovskite formation [J]. ACS Energy Lett., 2018, 3(1): 92-97. doi: 10.1021/acsenergylett.7b01057http://dx.doi.org/10.1021/acsenergylett.7b01057
QIU J, XIA Y D, CHEN Y H, et al. Management of crystallization kinetics for efficient and stable low-dimensional Ruddlesden‐Popper(LDRP) lead-free perovskite solar cells [J]. Adv. Sci., 2019, 6(1): 1800793-1-7.
YANG D, YANG R X, REN X D, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport [J]. Adv. Mater., 2016, 28(26): 5206-5213. doi: 10.1002/adma.201600446http://dx.doi.org/10.1002/adma.201600446
PENG X F, YANG X H, LIU D T, et al. Targeted distribution of passivator for polycrystalline perovskite light-emitting diodes with high efficiency [J]. ACS Energy Lett., 2021, 6(12): 4187-4194. doi: 10.1021/acsenergylett.1c01753http://dx.doi.org/10.1021/acsenergylett.1c01753
LIU Z, QIU W D, PENG X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33(43): 2103268-1-9. doi: 10.1002/adma.202103268http://dx.doi.org/10.1002/adma.202103268
ZHANG X Q, WU G, YANG S D, et al. Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability [J]. Small, 2017, 13(33): 1700611-1-8. doi: 10.1002/smll.201700611http://dx.doi.org/10.1002/smll.201700611
LI Z M, LIU N, MENG K, et al. A new organic interlayer spacer for stable and efficient 2D Ruddlesden-Popper perovskite solar cells [J]. Nano Lett., 2019, 19(8): 5237-5245. doi: 10.1021/acs.nanolett.9b01652http://dx.doi.org/10.1021/acs.nanolett.9b01652
HUANG F, SIFFALOVIC P, LI B, et al. Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells [J]. Chem. Eng. J., 2020, 394: 124959-1-8. doi: 10.1016/j.cej.2020.124959http://dx.doi.org/10.1016/j.cej.2020.124959
FU W F, WANG J, ZUO L J, et al. Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency [J]. ACS Energy Lett., 2018, 3(9): 2086-2093. doi: 10.1021/acsenergylett.8b01181http://dx.doi.org/10.1021/acsenergylett.8b01181
WANG J F, LUO S Q, LIN Y, et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites [J]. Nat. Commun., 2020, 11(1): 582-1-9. doi: 10.1038/s41467-019-13856-1http://dx.doi.org/10.1038/s41467-019-13856-1
TSAI H, NIE W Y, BLANCON J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells [J]. Nature, 2016, 536(7616): 312-316. doi: 10.1038/nature18306http://dx.doi.org/10.1038/nature18306
YANG B, WANG M, HU X F, et al. Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer [J]. Nano Energy, 2019, 57: 718-727. doi: 10.1016/j.nanoen.2018.12.097http://dx.doi.org/10.1016/j.nanoen.2018.12.097
LUO C, ZHENG G H J, GAO F, et al. Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells [J]. Joule, 2022, 6(1): 240-257. doi: 10.1016/j.joule.2021.12.006http://dx.doi.org/10.1016/j.joule.2021.12.006
ZHAO C Y, QIN C J. Quasi-2D lead halide perovskite gain materials toward electrical pumping laser [J]. Nanophotonics, 2020, 10(8): 2167-2180. doi: 10.1515/nanoph-2020-0630http://dx.doi.org/10.1515/nanoph-2020-0630
LI J Z, ZHANG L, CHU Z M, et al. Amplified spontaneous emission with a low threshold from quasi-2D perovskite films via phase engineering and surface passivation [J]. Adv. Opt. Mater., 2022, 10(6): 2102563-1-9. doi: 10.1002/adom.202102563http://dx.doi.org/10.1002/adom.202102563
ROY P K, ULAGANATHAN R K, RAGHAVAN C M, et al. Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods [J]. Nanoscale, 2020, 12(35): 18269-18277. doi: 10.1039/d0nr01171ahttp://dx.doi.org/10.1039/d0nr01171a
LIANG Y, SHANG Q Y, WEI Q, et al. Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness [J]. Adv. Mater., 2019, 31(39): 1903030-1-8. doi: 10.1002/adma.201903030http://dx.doi.org/10.1002/adma.201903030
ZHANG H B, HU Y Z, WEN W, et al. Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic-inorganic hybrid perovskites [J]. APL Mater., 2021, 9(7): 071106-1-8. doi: 10.1063/5.0052458http://dx.doi.org/10.1063/5.0052458
BOOKER E P, PRICE M B, BUDDEN P J, et al. Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites [J]. Adv. Opt. Mater., 2018, 6(21): 1800616-1-5. doi: 10.1002/adom.201800616http://dx.doi.org/10.1002/adom.201800616
LI Y, ROGER J, ALLEGRO I, et al. Lasing from laminated quasi-2D/3D perovskite planar heterostructures [J]. Adv. Funct. Mater., 2022, 32(27): 2200772-1-8. doi: 10.1002/adfm.202200772http://dx.doi.org/10.1002/adfm.202200772
JIA Y F, KERNER R A, GREDE A J, et al. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor [J]. Nat. Photonics, 2017, 11(12): 784-788. doi: 10.1038/s41566-017-0047-6http://dx.doi.org/10.1038/s41566-017-0047-6
BRENNER P, BAR-ON O, JAKOBY M, et al. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites [J]. Nat. Commun., 2019, 10(1): 988-1-7. doi: 10.1038/s41467-019-08929-0http://dx.doi.org/10.1038/s41467-019-08929-0
HSIEH Y H, HSU B W, PENG K N, et al. Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold [J]. ACS Nano, 2020, 14(9): 11670-11676. doi: 10.1021/acsnano.0c04224http://dx.doi.org/10.1021/acsnano.0c04224
QIN C J, SANDANAYAKA A S D, ZHAO C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films [J]. Nature, 2020, 585(7823): 53-57. doi: 10.1038/s41586-020-2621-1http://dx.doi.org/10.1038/s41586-020-2621-1
0
Views
690
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution