浏览全部资源
扫码关注微信
华中科技大学 武汉光电国家研究中心, 湖北 武汉 430074
Published:05 November 2022,
Received:16 May 2022,
Revised:01 June 2022,
移动端阅览
褚应波,李进延.宽带放大光纤研究进展及发展趋势[J].发光学报,2022,43(11):1678-1689.
CHU Ying-bo,LI Jin-yan.Research Progress and Development Trend of Broadband Amplified Optical Fiber[J].Chinese Journal of Luminescence,2022,43(11):1678-1689.
褚应波,李进延.宽带放大光纤研究进展及发展趋势[J].发光学报,2022,43(11):1678-1689. DOI: 10.37188/CJL.20220178.
CHU Ying-bo,LI Jin-yan.Research Progress and Development Trend of Broadband Amplified Optical Fiber[J].Chinese Journal of Luminescence,2022,43(11):1678-1689. DOI: 10.37188/CJL.20220178.
掺铒光纤放大器的出现是光纤通信领域颠覆性的技术突破,它使基于密集波分复用技术的超高速率、超大容量、超长距离光纤通信成为可能并促使其快速发展。光纤通信系统要实现长距离大容量通信必然离不开相应的光纤放大器。但是随着传输容量需求的爆发性增长,现有光纤通信系统面临巨大的扩容压力。本文系统综述了扩展增益带宽提升传输容量的研究进展,讨论了宽带放大光纤及其放大器发展所涉及的关键问题,提出了对超宽带放大光纤及其放大器发展趋势的理解,并对基于少模多芯光纤的空分复用技术研究进行了展望。
The erbium-doped fiber amplifier(EDFA) is a revolutionary breakthrough in the field of optical fiber communication, which makes long-distance, large-capacity, high-speed optical fiber communication possible. To realize long-distance transmission of optical fiber communication systems, it is inseparable from the corresponding optical fiber amplifier. However, with the explosive growth of transmission capacity demand, the existing DWDM communication system is facing huge pressure for capacity expansion. This paper systematically reviews the research progress of expanding the gain bandwidth to improve the transmission capacity, discusses the key issues involved in broadband active fibers and amplifiers, puts forward an understanding of ultra-broadband active fibers and their amplifiers in various bands, and provides a new perspective on future space division multiplexing based on few-mode multi-core fibers.
宽带放大扩展C-band扩展L-band超宽带放大空分复用放大
broadband amplificationextended C-bandextended L-bandultra-wideband amplificationspace division multiplexing amplification
薛文元. 现代通信技术发展与展望 [J]. 信息通信, 2015(3): 223. doi: 10.3969/j.issn.1673-1131.2015.03.163http://dx.doi.org/10.3969/j.issn.1673-1131.2015.03.163
XUE W Y. Development and prospect of modern communication technology [J]. Inf. Commun., 2015(3): 223-223. (in Chinese). doi: 10.3969/j.issn.1673-1131.2015.03.163http://dx.doi.org/10.3969/j.issn.1673-1131.2015.03.163
田金利. 简述DWDM技术在通信行业的应用与发展 [J]. 中国科技博览, 2015(34): 369.
TIAN J L. The application and development of DWDM technology in the communication industry [J]. China Sci. Technol. Rev., 2015(34): 369. (in Chinese)
余少华, 杨奇, 薛道均, 等. 超高速超大容量超长距离光传输基础理论与关键技术研究 [J]. 电信科学, 2014, 30(10): 52-63. doi: 10.3969/j.issn.1000-0801.2014.10.010http://dx.doi.org/10.3969/j.issn.1000-0801.2014.10.010
YU S H, YANG Q, XUE D J, et al. Research on basic theory and key technology of ultra-high-speed, ultra-large-capacity, ultra-long-haul optical transmission [J]. Telecommun. Sci., 2014, 30(10): 52-63. (in Chinese). doi: 10.3969/j.issn.1000-0801.2014.10.010http://dx.doi.org/10.3969/j.issn.1000-0801.2014.10.010
程永刚. 超长距离波分传输系统的发展机遇、关键技术及其网络应用 [J]. 电信网技术, 2004(7): 12-18.
CHENG Y G. The developing opportunity, key technologies and network application of ultra longhaul DWM transmission system [J]. Telecommun. Netw. Technol., 2004(7): 12-18. (in Chinese)
刘厚权, 杜良桢. 长距离DWDM系统中EDFA的研制 [J]. 光纤与电缆及其应用技术, 2001(4): 22-24. doi: 10.3969/j.issn.1006-1908.2001.04.006http://dx.doi.org/10.3969/j.issn.1006-1908.2001.04.006
LIU H Q, DU L Z. Development of EDFA used for long distance DWDM system [J]. Opt. Fiber Electr. Cable, 2001(4): 22-24. (in Chinese). doi: 10.3969/j.issn.1006-1908.2001.04.006http://dx.doi.org/10.3969/j.issn.1006-1908.2001.04.006
谢玉光. 基于DWDM的全光通信网关键技术浅谈 [J]. 探索科学, 2016(9): 77.
XIE Y G. Discussion on key technologies of all-optical communication network based on DWDM [J]. Explore Sci. , 2016(9): 77. (in Chinese)
张阳安, 李玲. DWDM技术的发展及关键技术的研究 [J]. 有线电视技术, 2001, 8(18): 12-15. doi: 10.3969/j.issn.1008-5351.2001.18.004http://dx.doi.org/10.3969/j.issn.1008-5351.2001.18.004
ZHANG Y A, LI L. Evolution of key DWDM technologies [J]. CATV Technol., 2001, 8(18): 12-15. (in Chinese). doi: 10.3969/j.issn.1008-5351.2001.18.004http://dx.doi.org/10.3969/j.issn.1008-5351.2001.18.004
王加莹. 长途超大容量DWDM光通信技术及发展 [J]. 光通信技术, 2003, 27(2): 1-4. doi: 10.3969/j.issn.1002-5561.2003.01.002http://dx.doi.org/10.3969/j.issn.1002-5561.2003.01.002
WANG J Y. Status and future-promises for ultra high capacity long haul DWDM optical fiber communication [J]. Opt. Commun. Technol., 2003, 27(2): 1-4. (in Chinese). doi: 10.3969/j.issn.1002-5561.2003.01.002http://dx.doi.org/10.3969/j.issn.1002-5561.2003.01.002
DA N, YANG L Y, PENG M Y, et al. Preparation and spectroscopic properties of Er3+-doped high silica glass fabricated by sintering nanoporous glass [J]. Mater. Lett., 2006, 60(16): 1987-1989. doi: 10.1016/j.matlet.2005.12.064http://dx.doi.org/10.1016/j.matlet.2005.12.064
KASAMATSU T, YANO Y, ONO T. Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51-μm wavelength region [J]. IEEE Photonics Technol. Lett., 2001, 13(1): 31-33. doi: 10.1109/68.903211http://dx.doi.org/10.1109/68.903211
DIANOV E M, FIRSTOV S V, MELKUMOV M A. Bismuth-doped optical fibers: advances and new developments [C]. Workshop on Specialty Optical Fibers and their Applications, Hong Kong,China, 2015: WT1A.4. doi: 10.1364/wsof.2015.wt1a.4http://dx.doi.org/10.1364/wsof.2015.wt1a.4
宋昭远, 邵秋峰,冯伟健,等. 掺铒镉铝硅酸盐玻璃的Judd-Ofelt理论分析与光谱特性 [J]. 红外与激光工程, 2017, 46(2): 0220001-1-6. doi: 10.3788/irla20174602.220001http://dx.doi.org/10.3788/irla20174602.220001
SONG Z Y, SHAO Q F, FENG W J, et al. Judd-ofelt theory analysis and spectroscopic properties of Er3+-doped cadmium aluminium silicate glass [J]. Infrared Laser Eng., 2017, 46(2): 0220001-1-6.(in Chinese). doi: 10.3788/irla20174602.220001http://dx.doi.org/10.3788/irla20174602.220001
REDDY A A, BABU S S, PRADEESH K, et al. Optical properties of highly Er3+-doped sodium-aluminium-phosphate glasses for broadband 1.5 μm emission [J]. J. Alloys Compd., 2011, 509(9): 4047-4052. doi: 10.1016/j.jallcom.2011.01.016http://dx.doi.org/10.1016/j.jallcom.2011.01.016
RAJESH D, RATNAKARAM Y C, BALAKRISHNA A. Er3+-doped strontium lithium bismuth borate glasses for broadband 1.5 μm emission—structural and optical properties [J]. J. Alloys Compd., 2013, 563: 22-27. doi: 10.1016/j.jallcom.2013.02.055http://dx.doi.org/10.1016/j.jallcom.2013.02.055
ISMAIL M M, FAROUK H, SALEM M A, et al. Optical properties of Er3+ doped phosphate glasses [J]. J. Sci. Res. Sci., 2019, 36(1): 469-483. doi: 10.21608/jsrs.2019.58543http://dx.doi.org/10.21608/jsrs.2019.58543
贾相华, 吕树臣. Er3+及Er3+/Yb3+共掺铋酸盐玻璃光谱性质研究 [J]. 物理学报, 2007, 56(8): 4971-4976. doi: 10.7498/aps.56.4971http://dx.doi.org/10.7498/aps.56.4971
JIA X H, LÜ S C. Spectroscopic properties of Er3+ and Er3+/Yb3+ co-doped bismuth glasses [J]. Acta Phys. Sinica, 2007, 56(8): 4971-4976. (in Chinese). doi: 10.7498/aps.56.4971http://dx.doi.org/10.7498/aps.56.4971
PENG X, SONG F, GONOKAMI M K, et al. Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics [J]. Opt. Eng., 2005, 44(3): 034202. doi: 10.1117/1.1869995http://dx.doi.org/10.1117/1.1869995
李进延, 李海清, 蒋作文, 等. 高增益掺铒光纤的设计和制备研究 [J]. 光学与光电技术, 2004, 2(4): 11-14. doi: 10.3969/j.issn.1672-3392.2004.04.004http://dx.doi.org/10.3969/j.issn.1672-3392.2004.04.004
LI J Y, LI H Q, JIANG Z W, et al. Design and research of high gain erbium-doped optical fiber [J]. Opt. Optoelectron. Technol., 2004, 2(4): 11-14. (in Chinese). doi: 10.3969/j.issn.1672-3392.2004.04.004http://dx.doi.org/10.3969/j.issn.1672-3392.2004.04.004
李进延, 李海清, 蒋作文, 等. 新型掺铒光纤的制备和研究 [J]. 光通信技术, 2005, 29(4): 7-9. doi: 10.3969/j.issn.1002-5561.2005.04.002http://dx.doi.org/10.3969/j.issn.1002-5561.2005.04.002
LI J Y, LI H Q, JIANG Z W, et al. Fabrication and research of a novel erbium-doped optical fiber [J]. Opt. Commun. Technol., 2005, 29(4): 7-9. (in Chinese). doi: 10.3969/j.issn.1002-5561.2005.04.002http://dx.doi.org/10.3969/j.issn.1002-5561.2005.04.002
常德远. 高浓度掺铒光纤的研制 [D]. 北京: 北京交通大学, 2008.
CHANG D Y. Preparation of High Concentration Erbium‐doped Optical Fiber [D]. Beijing: Beijing Jiaotong University, 2008. (in Chinese)
KAKUI M, ISHIKAWA S. Long-wavelength‐band optical amplifiers employing silica-based erbium doped fibers designed for wavelength division multiplexing systems and networks [J]. IEICE Trans. Electron., 2000, E83-C(6): 799-815.
BOLSHTYANSKY M, MANDELBAUM I, PAN F. Signal excited-state absorption in the L-band EDFA: simulation and measurements [J]. J. Lightwave Technol., 2005, 23(9): 2796-2799. doi: 10.1109/jlt.2005.853145http://dx.doi.org/10.1109/jlt.2005.853145
MORI A, SAKAMOTO T, SHIKANO K, et al. Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1 581-1 616 nm wavelength region [J]. Electron. Lett., 2000, 36(7): 621-622. doi: 10.1049/el:20000504http://dx.doi.org/10.1049/el:20000504
SUGIMOTO N, OCHIAI K, OHARA S, et al. Highly efficient and short length Lanthanum co-doped Bi2O3-based EDF for extended L-band amplification [C]. Optical Amplifiers and Their Applications, Vancouver, 2002: PD5. doi: 10.1364/oaa.2002.pd5http://dx.doi.org/10.1364/oaa.2002.pd5
MASUDA H, MIYAMOTO Y. Low-noise extended L-band phosphorus co-doped silicate EDFA consisting of novel two-stage gain-flattened gain blocks [J]. Electron. Lett., 2008, 44(18): 1082-1083. doi: 10.1049/el:20081520http://dx.doi.org/10.1049/el:20081520
LEI C M, FENG H L, MESSADDEQ Y, et al. Investigation of C-band pumping for extended L-band EDFAs [J]. J. Opt. Soc. Am. B, 2020, 37(8): 2345-2352. doi: 10.1364/josab.392291http://dx.doi.org/10.1364/josab.392291
张岩滨, 彭江得, 刘小明. 本征平坦增益带宽>33 nm的高增益、低噪声L-波段铒光纤放大器 [J]. 中国激光, 2002, 29(11): 987-990. doi: 10.3321/j.issn:0258-7025.2002.11.008http://dx.doi.org/10.3321/j.issn:0258-7025.2002.11.008
ZHANG Y B, PENG J D, LIU X M. L-band erbium doped fiber amplifier with intrinsic gain flattering bandwidth of > 33 nm [J]. Chin. J. Lasers, 2002, 29(11): 987-990. (in chinese). doi: 10.3321/j.issn:0258-7025.2002.11.008http://dx.doi.org/10.3321/j.issn:0258-7025.2002.11.008
张岩滨, 彭江得, 刘小明, 等. L-波段掺铒光纤放大器增益谱特性研究 [J]. 中国激光, 2001, 28(11): 1013-1016. doi: 10.3321/j.issn:0258-7025.2001.11.015http://dx.doi.org/10.3321/j.issn:0258-7025.2001.11.015
ZHANG Y B, PENG J D, LIU X M, et al. Characteristics of L-band erbium doped fiber amplifier gain spectra [J]. Chin. J. Lasers, 2001, 28(11): 1013-1016. (in Chinese). doi: 10.3321/j.issn:0258-7025.2001.11.015http://dx.doi.org/10.3321/j.issn:0258-7025.2001.11.015
任新根, 徐国萍, 董天临. 激发态吸收(ESA)对掺铒光纤放大器的影响 [J]. 量子电子学报, 1992, 9(4): 394-396.
REN X G, XU G P, DONG T L. Effect of ESA in erbium-doped fiber amplifier [J]. Chin. J. Quantum Electron., 1992, 9(4): 394-396. (in Chinese)
褚应波, 娄阳, 陈阳, 等. 超宽带、高增益、低噪声L-band扩展掺铒光纤及其放大性能研究 [J]. 中国激光, 2021, 48(7): 0715001-1-5. doi: 10.3788/cjl202148.0715001http://dx.doi.org/10.3788/cjl202148.0715001
CHU Y B, LOU Y, CHEN Y, et al. Ultra-broadband, high gain, and low noise extended L-band erbium-doped fiber and its amplification performance [J]. Chin. J. Lasers, 2021, 48(7): 0715001-1-5. (in Chinese). doi: 10.3788/cjl202148.0715001http://dx.doi.org/10.3788/cjl202148.0715001
LOU Y, CHEN Y, GU Z M, et al. Er3+/Ce3+ co-doped phosphosilicate fiber for extend the L-band amplification [J]. J. Lightw. Technol., 2021, 39(18): 5933-5938. doi: 10.1109/jlt.2021.3095340http://dx.doi.org/10.1109/jlt.2021.3095340
CHEN Y, LOU Y, GU Z M, et al. Extending the L-band amplification to 1 623 nm using Er/Yb/P co-doped phosphosilicate fiber [J]. Opt. Lett., 2021, 46(23): 5834-5837. doi: 10.1364/ol.445286http://dx.doi.org/10.1364/ol.445286
ARAI Y, SUZUKI T, OHISHI Y, et al. Ultrabroadband near-infrared emission from a colorless bismuth-doped glass [J]. Appl. Phys. Lett., 2007, 90(26): 261110-1-3. doi: 10.1063/1.2752539http://dx.doi.org/10.1063/1.2752539
MURATA K, FUJIMOTO Y, KANABE T, et al. Bi-doped SiO2 as a new laser material for an intense laser [J]. Fusion Eng. Des., 1999, 44(1-4): 437-439. doi: 10.1016/s0920-3796(98)00334-2http://dx.doi.org/10.1016/s0920-3796(98)00334-2
FUJIMOTO Y, NAKATSUKA M. Infrared luminescence from bismuth-doped silica glass [J]. Jpn. J. Appl. Phys., 2001, 40(3B): L279-L281. doi: 10.1143/jjap.40.l279http://dx.doi.org/10.1143/jjap.40.l279
FUJIMOTO Y, NAKATSUKA M. Optical amplification in bismuth-doped silica glass [J]. Appl. Phys. Lett., 2003, 82(19): 3325-3326. doi: 10.1063/1.1575492http://dx.doi.org/10.1063/1.1575492
DVOYRIN V V, MASHINSKY V M, DIANOV E M, et al. Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres [C]. 2005 31st European Conference on Optical Communication, Glasgow, 2005: 949-950. doi: 10.1049/cp:20050796http://dx.doi.org/10.1049/cp:20050796
HARUNA T, KAKUI M, TOSHIKI T, et al. Silica-based bismuth-doped fiber for ultra broad band light-source and optical amplification around 1.1 μm [C]. Optical Amplifiers and Their Applications, Budapest Hungary, 2005: MC3. doi: 10.1364/OAA.2005.MC3http://dx.doi.org/10.1364/OAA.2005.MC3
DIANOV E M, DVOYRIN V V, MASHINSKY V M, et al. CW bismuth fibre laser [J]. Quantum Electron., 2005, 35(12): 1083-1084. doi: 10.1070/qe2005v035n12abeh013092http://dx.doi.org/10.1070/qe2005v035n12abeh013092
BUFETOV I A, FIRSTOV S V, KHOPIN V F, et al. Bi-doped fiber lasers and amplifiers for a spectral region of 1 300- 1 470 nm [J]. Opt. Lett., 2008, 33(19): 2227-2229.
DIANOV E M, MEL'KUMOV M A, SHUBIN A V, et al. Bismuth-doped fibre amplifier for the range 1 300-1 340 nm [J]. Quantum Electron., 2009, 39(12): 1099-1101. doi: 10.1070/qe2009v039n12abeh014238http://dx.doi.org/10.1070/qe2009v039n12abeh014238
MELKUMOV M A, BUFETOV I A, SHUBIN A V, et al. Laser diode pumped bismuth-doped optical fiber amplifier for 1 430 nm band [J]. Opt. Lett., 2011, 36(13): 2408-2410.
FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al. A 23-dB bismuth-doped optical fiber amplifier for a 1 700-nm band [J]. Sci. Rep., 2016, 6(1): 28939-1-6. doi: 10.1038/srep28939http://dx.doi.org/10.1038/srep28939
FIRSTOV S V, RIUMKIN K E, KHEGAI A M, et al. Wideband bismuth-and erbium-codoped optical fiber amplifier for C+ L+ U-telecommunication band [J]. Laser Phys. Lett., 2017, 14(11): 110001-1-5. doi: 10.1088/1612-202x/aa8adfhttp://dx.doi.org/10.1088/1612-202x/aa8adf
DVOYRIN V V, MASHINSKY V M, TURITSYN S K. Bismuth-doped fiber amplifier operating in the spectrally adjacent to EDFA range of 1 425-1 500 nm [C]. Optical Fiber Communication Conference, San Diego, 2020: W1C.5. doi: 10.1364/ofc.2020.w1c.5http://dx.doi.org/10.1364/ofc.2020.w1c.5
郭梦婷, 田晋敏, 王璠, 等. Bi掺杂高磷石英基光纤实现E波段放大 [J]. 发光学报, 2022, 43(4): 478-481. doi: 10.37188/CJL.20210409http://dx.doi.org/10.37188/CJL.20210409
GUO M T, TIAN J M, WANG F, et al. Amplification in E band based on highly phosphorus and bismuth co-doped silica fiber [J]. Chin. J. Lumin., 2022, 43(4): 478-481. (in Chinese). doi: 10.37188/CJL.20210409http://dx.doi.org/10.37188/CJL.20210409
MIKHAILOV V, LUO J W, INNISS D, et al. Amplified transmission beyond C- and L-bands: bismuth doped fiber amplifier for O-band transmission [J]. J. Lightw. Technol., 2022, 40(10): 3255-3262.
DIANOV E M, FIRSTOV S V, MELKUMOV M A. Bismuth-doped fiber lasers covering the spectral region 1 150-1 775 nm [C]. Laser Science, San Jose, 2015: LTu2H.1. doi: 10.1364/ls.2015.ltu2h.1http://dx.doi.org/10.1364/ls.2015.ltu2h.1
FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al. Laser-active fibers doped with bismuth for a wavelength region of 1.6-1.8 μm [J]. IEEE J. Sel. Top. Quantum Electron., 2018, 24(5): 0902415-1-15. doi: 10.1109/jstqe.2018.2801461http://dx.doi.org/10.1109/jstqe.2018.2801461
YAMADA M, ONO H, KANAMORI T, et al. Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration [J]. Electron. Lett., 1997, 33(8): 710-711. doi: 10.1049/el:19970455http://dx.doi.org/10.1049/el:19970455
KAWAI S, MASUDA H, SUZUKI K, et al. Ultrawide, 75 nm 3 dB gain-band optical amplifier utilizing erbium-doped fluoride fiber and Raman fiber [C]. Optical Fiber Communication Conference and Exhibit, San Jose, 1998: TuG3. doi: 10.1049/el:19980599http://dx.doi.org/10.1049/el:19980599
XIE Y, PAN Z, WILLNER A E, et al. Spectrally-efficient L-C band EDFA having a seamless interband channel region using sampled FBGs [J]. IEEE Photonics Technol. Lett., 2001, 13(5): 436-438. doi: 10.1109/68.920743http://dx.doi.org/10.1109/68.920743
FLOOD F A. L-band erbium-doped fiber amplifiers [C]. Optical Fiber Communication Conference, Baltimore, 2000: WG1.
章喆, 陈征, 马卫东. 高速DWDM通信技术及进展 [J]. 光通信研究, 2015(1): 5-8.
ZHANG Z, CHEN Z, MA W D. Technologies for high-rate DWDM transmission systems and their recent advances [J]. Study Opt. Commun., 2015(1): 5-8. (in Chinese)
MORI A, OHISHI Y, SUDO S. Erbium-doped tellurite glass fibre laser and amplifier [J]. Electron. Lett., 1997, 33(10): 863-864. doi: 10.1049/el:19970585http://dx.doi.org/10.1049/el:19970585
TANAKA S, IMAI K, YAZAKI T, et al. Ultra-wideband L-band EDFA using phosphorus co-doped silica-fiber [C]. Optical Fiber Communication Conference, Anaheim, 2002: ThJ3.
ZHANG J Z, SATHI Z M, LUO Y H, et al. Toward an ultra-broadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830 nm laser diode pump [J]. Opt. Express, 2013, 21(6): 7786-7792. doi: 10.1364/oe.21.007786http://dx.doi.org/10.1364/oe.21.007786
余哲, 徐祖应, 付松年. 空分复用传输用掺铒光纤研究进展 [J]. 邮电设计技术, 2018(6): 77-82. doi: 10.12045/issn1007-3043.2018.06.18http://dx.doi.org/10.12045/issn1007-3043.2018.06.18
YU Z, XU Z Y, FU S N. Review of erbium-doped fiber for space-division multiplexing transmisison [J]. Des. Techn. Posts Telecommun., 2018(6): 77-82. (in Chinese). doi: 10.12045/issn1007-3043.2018.06.18http://dx.doi.org/10.12045/issn1007-3043.2018.06.18
MORIOKA T. Recent progress in space-division multiplexed transmission technologies [C]. Optical Fiber Communication Conference, Anaheim, 2013: OW4F.2. doi: 10.1364/ofc.2013.ow4f.2http://dx.doi.org/10.1364/ofc.2013.ow4f.2
迟荣华, 周燕萍, 李立亚, 等. 低功耗MC-EDFA的技术发展路线 [J]. 光通信技术, 2019, 43(10): 22-28.
CHI R H, ZHOU Y P, LI L Y, et al. Low power MC-EDFA technology development route [J]. Opt. Commun. Technol., 2019, 43(10): 22-28. (in Chinese)
INAO S, SATO T, SENTSUI S, et al. Multicore optical fiber [C]. Optical Fiber Communication Conference, Washington, 1979: WB1. doi: 10.1364/ofc.1979.wb1http://dx.doi.org/10.1364/ofc.1979.wb1
迟荣华, 周燕萍, 李立亚. 多芯光纤放大器研究现状及发展分析 [J]. 激光与光电子学进展, 2019, 56(19): 190005-1-9. doi: 10.3788/lop56.190005http://dx.doi.org/10.3788/lop56.190005
CHI R H, ZHOU Y P, LI L Y. Research status and development analysis of multicore fiber amplifier [J]. Laser Optoelectron. Prog., 2019, 56(19): 190005-1-9. (in Chinese). doi: 10.3788/lop56.190005http://dx.doi.org/10.3788/lop56.190005
裴丽, 李祉祺, 王建帅, 等. 空分复用光纤放大器增益均衡技术研究进展 [J]. 光学学报, 2021, 41(1): 0106001-1-11. doi: 10.3788/aos202141.0106001http://dx.doi.org/10.3788/aos202141.0106001
PEI L, LI Z Q, WANG J S, et al. Review on gain equalization technology of fiber amplifier using space division multiplexing [J]. Acta Opt. Sinica, 2021, 41(1): 0106001-1-11. (in Chinese). doi: 10.3788/aos202141.0106001http://dx.doi.org/10.3788/aos202141.0106001
RYF R, FONTAINE N K, GUAN B, et al. 1 705-km transmission over coupled-core fibre supporting 6 spatial modes [C]. 2014 The European Conference on Optical Communication (ECOC), Cannes, 2014: 1-3.
XIA C, EFTEKHAR M A, CORREA R A, et al. Supermodes in coupled multi-core waveguide structures [J]. IEEE J. Sel. Top. Quantum Electron., 2016, 22(2): 4401212-1-12. doi: 10.1109/jstqe.2015.2479158http://dx.doi.org/10.1109/jstqe.2015.2479158
SAKAMOTO T, MORI T, WADA M, et al. Strongly-coupled multi-core fiber and its optical characteristics for MIMO transmission systems [J]. Opt. Fiber Technol., 2017, 35: 8-18. doi: 10.1016/j.yofte.2016.07.010http://dx.doi.org/10.1016/j.yofte.2016.07.010
WINZER P J, GNAUCK A H, KONCZYKOWSKA A, et al. Penalties from in-band crosstalk for advanced optical modulation formats [C]. 2011 37th European Conference and Exhibition on Optical Communication, Geneva, 2011: 1-3. doi: 10.1364/ecoc.2011.tu.5.b.7http://dx.doi.org/10.1364/ecoc.2011.tu.5.b.7
MIZUNO T, SHIBAHARA K, YE F H, et al. Long-haul dense space-division multiplexed transmission over low-crosstalk heterogeneous 32-core transmission line using a partial recirculating loop system [J]. J. Lightw. Technol., 2017, 35(3): 488-498. doi: 10.1109/jlt.2016.2615070http://dx.doi.org/10.1109/jlt.2016.2615070
ABEDIN K S, TAUNAY T F, FISHTEYN M, et al. Amplification and noise properties of an erbium-doped multicore fiber amplifier [J]. Opt. Express, 2011, 19(17): 16715-16721. doi: 10.1364/oe.19.016715http://dx.doi.org/10.1364/oe.19.016715
ONO H, TAKENAGA K, ICHII K, et al. 12-core double-clad Er/Yb-doped fiber amplifier employing free-space coupling pump/signal combiner module [C]. 39th European Conference and Exhibition on Optical Communication(ECOC 2013), London, 2013: 1-3. doi: 10.1049/cp.2013.1469http://dx.doi.org/10.1049/cp.2013.1469
CHEN H S, FONTAINE N K, RYF R, et al. Transmission over coupled six-core fiber with two in-line cladding-pumped six-core EDFAs [C]. 2015 European Conference on Optical Communication (ECOC), Valencia, 2015: 1-3. doi: 10.1109/ecoc.2015.7341963http://dx.doi.org/10.1109/ecoc.2015.7341963
MIZUNO T, SHIBAHARA K, ONO H, et al. 32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1 600 km using crosstalk-managed single-mode heterogeneous multicore transmission line [C]. 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, 2016: 1-3.
TAKASAKA S, MAEDA K, KAWASAKI K, et al. Increase of cladding pump power efficiency by a 19-core erbium doped fibre amplifier [C]. 2017 European Conference on Optical Communication (ECOC), Gothenburg, 2017: 1-3. doi: 10.1109/ecoc.2017.8346071http://dx.doi.org/10.1109/ecoc.2017.8346071
JUNG Y, WADA M, SAKAMOTO T, et al. High spatial density 6-mode 7-core multicore L-band fiber amplifier [C]. 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, 2019: Th1B.7. doi: 10.1364/ofc.2019.th1b.7http://dx.doi.org/10.1364/ofc.2019.th1b.7
JUNG Y, WADA M, SHIBAHARA K, et al. High spatial density 6-mode 7-core fiber amplifier for L-band operation [J]. J. Lightw. Technol., 2020, 38(11): 2938-2943. doi: 10.1109/jlt.2020.2976524http://dx.doi.org/10.1109/jlt.2020.2976524
TAKASAKA S, MAEDA K, SUGIZAKI R, et al. Output power increase of cladding pumped 7-core EDFA by using mie scattering [C]. 2020 European Conference on Optical Communications (ECOC), Brussels, 2020: 1-4. doi: 10.1109/ecoc48923.2020.9333252http://dx.doi.org/10.1109/ecoc48923.2020.9333252
FONTAINE N K, LOPEZ J E A, CHEN H S, et al. Coupled-core optical amplifier [C]. 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2017: 1-3. doi: 10.1364/ofc.2017.th5d.3http://dx.doi.org/10.1364/ofc.2017.th5d.3
WADA M, SAKAMOTO T, YAMAMOTO T, et al. Cladding pumped randomly coupled 12-core erbium-doped fiber amplifier with low mode-dependent gain [J]. J. Lightw. Technol., 2018, 36(5): 1220-1225. doi: 10.1109/jlt.2018.2797902http://dx.doi.org/10.1109/jlt.2018.2797902
WADA M, SAKAMOTO T, AOZASA S, et al. L-band randomly-coupled 12 core erbium doped fiber amplifier [C]. 2019 Optical Fiber Communications Conference and Exhibition, San Diego, 2019: Th1B.5. doi: 10.1364/ofc.2019.th1b.5http://dx.doi.org/10.1364/ofc.2019.th1b.5
辜之木, 褚应波, 李海清, 等. 多芯掺铒光纤的制备及其放大性能 [J]. 中国激光, 2022, 49(9): 0906003-1-8. doi: 10.3788/cjl202249.0906003http://dx.doi.org/10.3788/cjl202249.0906003
GU Z M, CHU Y B, LI H Q, et al. Fabrication and amplification characteristics of multicore erbium-doped fiber [J]. Chin. J. Lasers, 2022, 49(9): 0906003-1-8. (in Chinese). doi: 10.3788/cjl202249.0906003http://dx.doi.org/10.3788/cjl202249.0906003
0
Views
548
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution