浏览全部资源
扫码关注微信
1.山东大学 材料液固演变与加工教育部重点实验室, 山东 济南 250061
2.Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA
Published:05 September 2022,
Received:04 May 2022,
Revised:23 May 2022,
扫 描 看 全 文
梁延杰,刘景伟,闫劭等.蓝光LED激发深紫外上转换发光材料的光学定位与追踪应用[J].发光学报,2022,43(09):1436-1445.
LIANG Yan-jie,LIU Jing-wei,YAN Shao,et al.Blue LED-excitable Deep Ultraviolet Upconversion Phosphor for Optical Locating and Tracking Application[J].Chinese Journal of Luminescence,2022,43(09):1436-1445.
梁延杰,刘景伟,闫劭等.蓝光LED激发深紫外上转换发光材料的光学定位与追踪应用[J].发光学报,2022,43(09):1436-1445. DOI: 10.37188/CJL.20220177.
LIANG Yan-jie,LIU Jing-wei,YAN Shao,et al.Blue LED-excitable Deep Ultraviolet Upconversion Phosphor for Optical Locating and Tracking Application[J].Chinese Journal of Luminescence,2022,43(09):1436-1445. DOI: 10.37188/CJL.20220177.
光发射波长小于320 nm的深紫外发光材料具有光子能量高和不受室内环境光干扰等特性,在光化学与光医学领域具有重要应用前景,近年来受到国内外学者的广泛关注。本文利用固相合成法制备了Pr
3+
单掺和Pr
3+
⁃Gd
3+
共掺的LiYSiO
4
∶Pr
3+
和Li(Y,Gd)SiO
4
∶Pr
3+
深紫外上转换发光材料。在450 nm蓝光(激光或LED)激发下分别实现了C区紫外和窄带B区紫外上转换发光,发光峰值分别位于280 nm和313 nm。系统研究了蓝光激发功率对深紫外上转换发光性能的影响规律,证实了蓝光激发下的双光子上转换发光物理机制。探索利用LiYSiO
4
∶Pr
3+
作为光转换层,以蓝光LED作为激发源,设计构筑了新型荧光转换型UVC光源,并展示了该光源在室外光学定位与追踪领域的应用。
Deep ultraviolet(UV) luminescent materials with emission wavelength shorter than 320 nm have great potential for photochemistry and photomedicine because of the unique spectral features of UV light including high-energy photon and interference-free by indoor ambient light, which have aroused significant attention in the past few years. In this paper, we have synthesized deep UV emissive LiYSiO
4
∶Pr
3+
and Li(Y,Gd)SiO
4
∶Pr
3+
phosphors by doping Pr
3+
and Pr
3+
-Gd
3+
ion pairs into LiYSiO
4
host. Upon 450 nm blue light(laser or LED) excitation, these phosphors can emit light in the ultraviolet C and narrowband ultraviolet B through photon upconversion. The deep UV upconversion luminescence properties were investigated in detail by varying the excitation power of 450 nm blue laser, indicating that two-photon upconversion luminescence process is responsible for the deep UV emission. Deep UV light source has been successfully created through a combination of LiYSiO
4
∶Pr
3+
phosphor as luminescence converter and 450 nm LED as excitation source, which shows promising application in the optical locating and tracking field.
紫外上转换发光紫外光源Pr3+Pr3+-Gd3+光学定位与追踪
ultraviolet upconversion luminescenceultraviolet light sourcePr3+Pr3+-Gd3+optical locating and tracking
SONG K, MOHSENI M, TAGHIPOUR F. Application of ultraviolet light-emitting diodes(UV-LEDs) for water disinfection: a review [J]. Water Res., 2016, 94: 341-349. doi: 10.1016/j.watres.2016.03.003http://dx.doi.org/10.1016/j.watres.2016.03.003
BUONANNO M, WELCH D, SHURYAK I, et al. Far-UVC light(222 nm) efficiently and safely inactivates airborne human coronaviruses [J]. Sci. Rep., 2020, 10(1): 10285-1-8. doi: 10.1038/s41598-020-67211-2http://dx.doi.org/10.1038/s41598-020-67211-2
JARRETT P, SCRAGG R. A short history of phototherapy, vitamin D and skin disease [J]. Photochem. Photobiol. Sci., 2017, 16(3): 283-290. doi: 10.1039/c6pp00406ghttp://dx.doi.org/10.1039/c6pp00406g
HOU Z Y, ZHANG Y X, DENG K R, et al. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway [J]. ACS Nano, 2015, 9(3): 2584-2599. doi: 10.1021/nn506107chttp://dx.doi.org/10.1021/nn506107c
WEISMAN M J, DAGEFU F T, MOORE T J, et al. Analysis of the low-probability-of-detection characteristics of ultraviolet communications [J]. Opt. Express, 2020, 28(16): 23640-23651. doi: 10.1364/oe.399196http://dx.doi.org/10.1364/oe.399196
CHEN L, LIN L, TIAN M M, et al. The ultraviolet detection of corona discharge in power transmission lines [J]. Energy Power Eng., 2013, 5(4B): 1298-1302.
WANG X L, CHEN Y F, LIU F, et al. Solar-blind ultraviolet-C persistent luminescence phosphors [J]. Nat. Commun., 2020, 11(1): 2040-1-8. doi: 10.1038/s41467-020-16015-zhttp://dx.doi.org/10.1038/s41467-020-16015-z
WANG A Y, LIU Y C, WANG X J, et al. White-light flashlight activated up-conversion luminescence for ultraviolet-B tagging [J]. Opt. Lett., 2020, 45(10): 2720-2723. doi: 10.1364/ol.393770http://dx.doi.org/10.1364/ol.393770
陈凤, 陈璐, 刘峰, 等. 基于上转换荧光粉的紫外光源设计 [J]. 发光学报, 2021, 42(2): 131-135. doi: 10.37188/CJL.20200347http://dx.doi.org/10.37188/CJL.20200347
CHEN F, CHEN L, LIU F, et al. Upconverting phosphor-based ultraviolet light source [J]. Chin. J. Lumin., 2021, 42(2): 131-135. (in Chinese). doi: 10.37188/CJL.20200347http://dx.doi.org/10.37188/CJL.20200347
KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies [J]. Nat. Photonics, 2019, 13(4): 233-244. doi: 10.1038/s41566-019-0359-9http://dx.doi.org/10.1038/s41566-019-0359-9
DU Y Y, AI X Z, LI Z Y, et al. Visible-to-ultraviolet light conversion: materials and applications [J]. Adv. Photonics Res., 2021, 2(6): 2000213-1-20. doi: 10.1002/adpr.202000213http://dx.doi.org/10.1002/adpr.202000213
WANG F, LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem. Soc. Rev., 2009, 38(4): 976-989. doi: 10.1039/b809132nhttp://dx.doi.org/10.1039/b809132n
CAO C Y, QIN W P, ZHANG J S, et al. Ultraviolet upconversion emissions of Gd3+ [J]. Opt. Lett., 2008, 33(8): 857-859. doi: 10.1364/ol.33.000857http://dx.doi.org/10.1364/ol.33.000857
QIN W P, CAO C Y, WANG L L, et al. Ultraviolet upconversion fluorescence from 6DJ of Gd3+ induced by 980 nm excitation [J]. Opt. Lett., 2008, 33(19): 2167-2169. doi: 10.1364/ol.33.002167http://dx.doi.org/10.1364/ol.33.002167
ZHENG K Z, ZHAO D, ZHANG D S, et al. Ultraviolet upconversion fluorescence of Er3+ induced by 1 560 nm laser excitation [J]. Opt. Lett., 2010, 35(14): 2442-2444. doi: 10.1364/ol.35.002442http://dx.doi.org/10.1364/ol.35.002442
SHI F, WANG J S, ZHAI X S, et al. Facile synthesis of β-NaLuF4∶Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence [J]. CrystEngComm, 2011, 13(11): 3782-3787. doi: 10.1039/c1ce05092chttp://dx.doi.org/10.1039/c1ce05092c
宋维业, 石峰, 赵丹, 等. 具有强紫外上转换发射特性的小尺寸、水溶性NaYF4∶Yb, Tm纳米晶的合成与表征 [J]. 发光学报, 2012, 33(7): 688-692. doi: 10.3788/fgxb20123307.0693http://dx.doi.org/10.3788/fgxb20123307.0693
SONG W Y, SHI F, ZHAO D, et al. Synthesis and characterization of small size, water soluble, and intense ultraviolet upconversion emission of β-NaYF4∶Yb,Tm nanocrystals [J]. Chin. J. Lumin., 2012, 33(7): 688-692. (in Chinese). doi: 10.3788/fgxb20123307.0693http://dx.doi.org/10.3788/fgxb20123307.0693
QIN W P, LIU Z Y, SIN C N, et al. Multi-ion cooperative processes in Yb3+ clusters [J]. Light Sci. Appl., 2014, 3(8): e193-1-6. doi: 10.1038/lsa.2014.74http://dx.doi.org/10.1038/lsa.2014.74
WEN H L, ZHU H, CHEN X, et al. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles [J]. Angew. Chem. Int. Ed., 2013, 52(50): 13419-13423. doi: 10.1002/anie.201306811http://dx.doi.org/10.1002/anie.201306811
CHEN X, JIN L M, KONG W, et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing [J]. Nat. Commun., 2016, 7(1): 10304-1-6. doi: 10.1038/ncomms10304http://dx.doi.org/10.1038/ncomms10304
CHEN X, JIN L M, SUN T Y, et al. Energy migration upconversion in Ce(Ⅲ)-doped heterogeneous core-shell-shell nanoparticles [J]. Small, 2017, 13(43): 1701479. doi: 10.1002/smll.201701479http://dx.doi.org/10.1002/smll.201701479
SUN T Y, LI Y H, HO W L, et al. Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion [J]. Nat. Commun., 2019, 10(1): 1811-1-7. doi: 10.1038/s41467-019-09850-2http://dx.doi.org/10.1038/s41467-019-09850-2
WANG T, LIU B T, LIN Y, et al. Ultraviolet C lasing at 263 nm from Ba2LaF7∶Yb3+,Tm3+ upconversion nanocrystal microcavities [J]. Opt. Lett., 2020, 45(21): 5986-5989. doi: 10.1364/ol.401768http://dx.doi.org/10.1364/ol.401768
XU X H, LU W, WANG T, et al. Deep UV random lasing from NaGdF4∶Yb3+,Tm3+ upconversion nanocrystals in amorphous borosilicate glass [J]. Opt. Lett., 2020, 45(11): 3095-3098. doi: 10.1364/ol.394104http://dx.doi.org/10.1364/ol.394104
QIN F, ZHENG Y D, YU Y, et al. Ultraviolet upconversion luminescence of Gd3+ from Ho3+ and Gd3+ codoped oxide ceramic induced by 532-nm CW laser excitation [J]. Opt. Commun., 2011, 284(12): 3114-3117. doi: 10.1016/j.optcom.2011.02.060http://dx.doi.org/10.1016/j.optcom.2011.02.060
YANG Y M, MI C, SU X Y, et al. Ultraviolet C upconversion fluorescence of trivalent erbium in BaGd2ZnO5 phosphor excited by a visible commercial light-emitting diode [J]. Opt. Lett., 2014, 39(7): 2000-2003. doi: 10.1364/ol.39.002000http://dx.doi.org/10.1364/ol.39.002000
刘峰, 王笑军. 基质中非4f组态的电子态对Pr3+离子发光的影响 [J]. 发光学报, 2017, 38(1): 1-6. doi: 10.3788/fgxb20173801.0001http://dx.doi.org/10.3788/fgxb20173801.0001
LIU F, WANG X J. Effects of non-4f states on Pr3+ luminescence in phosphors [J]. Chin. J. Lumin., 2017, 38(1): 1-6. (in Chinese). doi: 10.3788/fgxb20173801.0001http://dx.doi.org/10.3788/fgxb20173801.0001
SUN C L, LI J F, HU C H, et al. Ultraviolet upconversion in Pr3+∶Y2SiO5 crystal by Ar+ laser(488 nm) excitation [J]. Eur. Phys. J. D, 2006, 39(2): 303-306. doi: 10.1140/epjd/e2006-00102-7http://dx.doi.org/10.1140/epjd/e2006-00102-7
CATES E L, CHO M, KIM J H. Converting visible light into UVC: microbial inactivation by Pr3+-activated upconversion materialsp [J]. Environ. Sci. Technol., 2011, 45(8): 3680-3686. doi: 10.1021/es200196chttp://dx.doi.org/10.1021/es200196c
CATES E L, WILKINSON A P, KIM J H. Visible-to-UVC upconversion efficiency and mechanisms of Lu7O6F9∶Pr3+ and Y2SiO5∶Pr3+ ceramics [J]. J. Lumin., 2015, 160: 202-209. doi: 10.1016/j.jlumin.2014.11.049http://dx.doi.org/10.1016/j.jlumin.2014.11.049
WU J H, ZHENG H L, LIU X H, et al. UVC upconversion material under sunlight excitation: LiYF4∶Pr3+ [J]. Opt. Lett., 2016, 41(4): 792-795. doi: 10.1364/ol.41.000792http://dx.doi.org/10.1364/ol.41.000792
DU Y Y, WANG Y F, DENG Z Q, et al. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8 upconversion nanocrystals [J]. Adv. Opt. Mater., 2020, 8(2): 1900968-1-6. doi: 10.1002/adom.201900968http://dx.doi.org/10.1002/adom.201900968
YIN Z Q, YUAN P, ZHU Z, et al. Pr3+ doped Li2SrSiO4: an efficient visible-ultraviolet C up-conversion phosphor [J]. Ceram. Int., 2021, 47(4): 4858-4863. doi: 10.1016/j.ceramint.2020.10.058http://dx.doi.org/10.1016/j.ceramint.2020.10.058
ZHOU X Q, QIAO J W, ZHAO Y F, et al. Multi-responsive deep-ultraviolet emission in praseodymium-doped phosphors for microbial sterilization [J]. Sci. China Mater., 2022, 65(4): 1103-1111. doi: 10.1007/s40843-021-1790-1http://dx.doi.org/10.1007/s40843-021-1790-1
ZHU Z, WANG Y, ZHANG W F, et al. Ultraviolet C random lasing at 230-280 nm from Pr3+ doped bulk crystal resonators by two-photon absorption [J]. Opt. Lett., 2022, 47(7): 1879-1882. doi: 10.1364/ol.452882http://dx.doi.org/10.1364/ol.452882
YAN S Y, LIU F, ZHANG J H, et al. Persistent emission of narrowband ultraviolet-B light upon blue-light illumination [J]. Phys. Rev. Appl., 2020, 13(4): 044051-1-8. doi: 10.1103/physrevapplied.13.044051http://dx.doi.org/10.1103/physrevapplied.13.044051
WANG X L, CHEN Y F, KNER P A, et al. Gd3+-activated narrowband ultraviolet-B persistent luminescence through persistent energy transfer [J]. Dalton Trans., 2021, 50(10): 3499-3505. doi: 10.1039/d1dt00120ehttp://dx.doi.org/10.1039/d1dt00120e
YAN S, LIANG Y J, LIU J W, et al. Development of ultraviolet-B long-lived persistent phosphors in Pr3+-doped garnets [J]. J. Mater. Chem. C, 2021, 9(41): 14730-14739. doi: 10.1039/d1tc03819bhttp://dx.doi.org/10.1039/d1tc03819b
刘东阳, 于增朝, 胡番, 等. 太阳光激发UVC紫外上转换发光材料Y2SiO5∶Pr3+的灭菌效果研究 [J]. 发光学报, 2017, 38(12): 1591-1596. doi: 10.3788/fgxb20173812.1591http://dx.doi.org/10.3788/fgxb20173812.1591
LIU D Y, YU Z C, HU F, et al. Sterilizing effect of UVC with Pr3+ doped Y2SiO5 under the sunlight [J]. Chin. J. Lumin., 2017, 38(12): 1591-1596. (in Chinese). doi: 10.3788/fgxb20173812.1591http://dx.doi.org/10.3788/fgxb20173812.1591
SU C X, AO L Y, ZHANG Z W, et al. Crystal structure, Raman spectra and microwave dielectric properties of novel temperature-stable LiYbSiO4 ceramics [J]. Ceram. Int., 2020, 46(12): 19996-20003. doi: 10.1016/j.ceramint.2020.05.070http://dx.doi.org/10.1016/j.ceramint.2020.05.070
RODNYI P A, STRYGANYUK G B, VAN EIJK C W E, et al. Variation of 5d-level position and emission properties of BaF2∶Pr crystals [J]. Phys. Rev. B, 2005, 72(19): 195112-1-6. doi: 10.1103/physrevb.72.195112http://dx.doi.org/10.1103/physrevb.72.195112
YOU F T, HUANG S H, MENG C X, et al. 4f5d configuration and photon cascade emission of Pr3+ in solids [J]. J. Lumin., 2007, 122-123: 58-61. doi: 10.1016/j.jlumin.2006.01.097http://dx.doi.org/10.1016/j.jlumin.2006.01.097
0
Views
507
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution