浏览全部资源
扫码关注微信
1.中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 201899
2.暨南大学理工学院 光电工程系, 广东 广州 510632
3.同济大学 物理科学与工程学院, 上海 200092
Published:05 November 2022,
Received:29 April 2022,
Revised:18 May 2022,
移动端阅览
许崇磊,马凤凯,张振等.Pr3+离子激活的可见光激光晶体研究进展[J].发光学报,2022,43(11):1690-1704.
XU Chong-lei,MA Feng-kai,ZHANG Zhen,et al.Research Progress of Pr3+ Activated Laser Crystals in Visible Region[J].Chinese Journal of Luminescence,2022,43(11):1690-1704.
许崇磊,马凤凯,张振等.Pr3+离子激活的可见光激光晶体研究进展[J].发光学报,2022,43(11):1690-1704. DOI: 10.37188/CJL.20220166.
XU Chong-lei,MA Feng-kai,ZHANG Zhen,et al.Research Progress of Pr3+ Activated Laser Crystals in Visible Region[J].Chinese Journal of Luminescence,2022,43(11):1690-1704. DOI: 10.37188/CJL.20220166.
可见波段激光因其在激光显示、光通讯、生物医疗、工业加工等领域的特殊应用而备受关注。近年来,Pr
3+
掺杂晶体作为一类重要的可见波段激光增益介质,已经在蓝光、绿光、橙光、红光波段实现了良好的激光输出,并已在氟化物中实现瓦级连续(CW)激光输出。本文系统总结了掺Pr
3+
氟化物和氧化物激光晶体在可见波段的光谱特性和激光输出现状,深入分析了激发态吸收、多声子弛豫、交叉弛豫过程对Pr
3+
可见激光输出的影响及其机制,旨在为新型可见光激光增益介质材料的筛选提供建议和指导。最后,总结了目前掺Pr
3+
可见激光晶体材料中仍存在的问题,并对后续的研究方向进行了展望。
Laser emission in visible spectral regions has attracted much attention due to a wide variety of domains such as material processing in industry, fluorescence microscopy in research science, wireless optical communication, holography, laser display. Recently,Pr
3+
activated fluoride laser crystals have achieved watt-level continuous output in various visible spectral ranges for instance, cyan(
3
P
0
→
3
H
4
), green(
3
P
1
→
3
H
5
), orange(
3
P
0
→
3
H
6
), red(
3
P
0
→
3
F
2
) as well as deep red (
3
P
0
→
3
F
3,4
). In this paper, various fluoride and oxide host crystals doped with Pr
3+
are used as the research objects, and the spectral characteristics and laser output status of the current Pr
3+
-activated laser crystals are systematically summarized. The effect of ESA(Excited state absorption), MPR(Multi-phonon relaxation), CR(Cross-relaxation) process on Pr
3+
laser output is expected to further provide valuable guidance and suggestions for the selection of laser gain medium. Finally, the existing problems in Pr
3+
-doped laser crystal materials are pointed out, and the follow-up research direction is prospected.
可见光激光晶体Pr3+掺杂激发态吸收交叉弛豫多声子弛豫
visible region laser crystalPr3+ dopedexcited state absorptioncross relaxationmulti-phonon relaxation
KRÄNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers [J]. Laser Photonics Rev., 2016, 10(4): 548-568. doi: 10.1002/lpor.201500290http://dx.doi.org/10.1002/lpor.201500290
CASTELLANO-HERNÁNDEZ E, KALUSNIAK S, METZ P W, et al. Diode‐pumped laser operation of Tb3+∶LiLuF4 in the green and yellow spectral range [J]. Laser Photonics Rev., 2020, 14(2): 1900229-1-7. doi: 10.1002/lpor.201900229http://dx.doi.org/10.1002/lpor.201900229
HUO X W, QI Y Y, ZHANG Y, et al. Research development of 589 nm laser for sodium laser guide stars [J]. Opt. Laser Eng., 2020, 134: 106207-1-14. doi: 10.1016/j.optlaseng.2020.106207http://dx.doi.org/10.1016/j.optlaseng.2020.106207
YAO W C, LIU J, LI E H, et al. Tb, Y∶SrF2 crystal for efficient laser operation in the visible spectral region [J]. Opt. Lett., 2022, 47(4): 774-777. doi: 10.1364/ol.448898http://dx.doi.org/10.1364/ol.448898
TSAI C T, CHENG C H, KUO H C, et al. Toward high-speed visible laser lighting based optical wireless communications [J]. Prog. Quantum Electron., 2019, 67: 100225-1-19. doi: 10.1016/j.pquantelec.2019.100225http://dx.doi.org/10.1016/j.pquantelec.2019.100225
李纳, 刘斌, 施佼佼, 等. 可见光波段稀土激光晶体的研究进展 [J]. 无机材料学报, 2019, 34(6): 573-589. doi: 10.15541/jim20180403http://dx.doi.org/10.15541/jim20180403
LI N, LIU B, SHI J J, et al. Research progress of rare-earth doped laser crystals in visible region [J]. J. Inorg. Mater., 2019, 34(6): 573-589. (in Chinese). doi: 10.15541/jim20180403http://dx.doi.org/10.15541/jim20180403
ENYA Y, YOSHIZUMI Y, KYONO T, et al. 531 nm green lasing of ingan based laser diodes on semi-polar {2021} free-standing GaN substrates [J]. Appl. Phys. Express, 2009, 2(8): 082101-1-3. doi: 10.1143/apex.2.082101http://dx.doi.org/10.1143/apex.2.082101
IMANISHI D. High-temperature operation of 640 nm wavelength high-power laser diode arrays [J]. Jpn. J. Appl. Phys., 2017, 56(3): 032702-1-5. doi: 10.7567/jjap.56.032702http://dx.doi.org/10.7567/jjap.56.032702
FANG Q N, LU D Z, YU H H, et al. Self-frequency-doubled vibronic yellow Yb∶YCOB laser at the wavelength of 570 nm [J]. Opt. Lett., 2016, 41(5): 1002-1005. doi: 10.1364/ol.41.001002http://dx.doi.org/10.1364/ol.41.001002
LI W S, DU T J, LAN J L, et al. 716 nm deep-red passively Q-switched Pr∶ZBLAN all-fiber laser using a carbon-nanotube saturable absorber [J]. Opt. Lett., 2017, 42(4): 671-674. doi: 10.1364/ol.42.000671http://dx.doi.org/10.1364/ol.42.000671
LIN X J, JI S H, FENG Q C, et al. Heat-induced wavelength-switchable high-power CW orange Pr3+∶YLF lasers [J]. J. Lumin., 2022, 243: 118627. doi: 10.1016/j.jlumin.2021.118627http://dx.doi.org/10.1016/j.jlumin.2021.118627
TANAKA H, FUJITA S, KANNARI F. High-power visibly emitting Pr3+∶YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes [J]. Appl. Opt., 2018, 57(21): 5923-5928. doi: 10.1364/ao.57.005923http://dx.doi.org/10.1364/ao.57.005923
HE M M, CHEN S, NA Q X, et al. Watt-level Pr3+∶YLF deep red laser pumped by a fiber-coupled blue LD module or a single-emitter blue LD [J]. Chin. Opt. Lett., 2020, 18(1): 011405-1-5. doi: 10.3788/col202018.011405http://dx.doi.org/10.3788/col202018.011405
MANGOLD M, WITTWER V J, SIEBER O D, et al. VECSEL gain characterization [J]. Opt. Express, 2012, 20(4): 4136-4148. doi: 10.1364/oe.20.004136http://dx.doi.org/10.1364/oe.20.004136
METZ P W, MARZAHL D T, MAJID A, et al. Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions [J]. Laser Photonics Rev., 2016, 10(2): 335-344. doi: 10.1002/lpor.201500274http://dx.doi.org/10.1002/lpor.201500274
MARZAHL D T, METZ P W, KRÄNKEL C, et al. Spectroscopy and laser operation of Sm3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19) [J]. Opt. Express, 2015, 23(16): 21118-21127. doi: 10.1364/oe.23.021118http://dx.doi.org/10.1364/oe.23.021118
QI Y Y, ZHANG Y, HUO X W, et al. Analysis on the thermal effect of Pr∶YLF crystal for power scaling [J]. Opt. Eng., 2022, 61(4): 046108-1-15.
QI Y Y, HUO X W, BAI Z X, et al. High-energy, nanosecond orange laser at 604 nm based on Pr∶YLF crystal at room temperature [J]. Results Phys., 2021, 26: 104382-1-7. doi: 10.1016/j.rinp.2021.104382http://dx.doi.org/10.1016/j.rinp.2021.104382
SRIVASTAVA A M. Aspects of Pr3+ luminescence in solids [J]. J. Lumin., 2016, 169: 445-449. doi: 10.1016/j.jlumin.2015.07.001http://dx.doi.org/10.1016/j.jlumin.2015.07.001
ZHANG Q Y, HUANG X Y. Recent progress in quantum cutting phosphors [J]. Prog. Mater. Sci., 2010, 55(5): 353-427. doi: 10.1016/j.pmatsci.2009.10.001http://dx.doi.org/10.1016/j.pmatsci.2009.10.001
时秋峰, 王磊, 郭海洁, 等. 真空紫外光及X射线激发下Pr3+掺杂Ba3La(PO4)3发光性质 [J]. 发光学报, 2021, 42(11): 1756-1762. doi: 10.37188/CJL.20210281http://dx.doi.org/10.37188/CJL.20210281
SHI Q F, WANG L, GUO H J, et al. Luminescence properties of Pr3+ doped in Ba3La(PO4)3 with vacuum ultraviolet and X-ray excitation [J]. Chin. J. Lumin., 2021, 42(11): 1756-1762. (in Chinese). doi: 10.37188/CJL.20210281http://dx.doi.org/10.37188/CJL.20210281
WANG D W, HUANG S H, YOU F T, et al. Vacuum ultraviolet spectroscopic properties of Pr3+ in MYF4 (M=Li, Na, and K) and LiLuF4 [J]. J. Lumin., 2007, 122-123: 450-452. doi: 10.1016/j.jlumin.2006.01.203http://dx.doi.org/10.1016/j.jlumin.2006.01.203
SOMMERDIJK J L, BRIL A, DE JAGER A W. Luminescence of Pr3+-activated fluorides [J]. J. Lumin., 1974, 9(4): 288-296. doi: 10.1016/0022-2313(74)90041-6http://dx.doi.org/10.1016/0022-2313(74)90041-6
PÉDRINI C, BOUTTET D, DUJARDIN C, et al. Spectroscopic studies of the f→d ultraviolet transitions of Pr3+ in alkaline earth fluorides [J]. Chem. Phys. Lett., 1994, 220(6): 433-436. doi: 10.1016/0009-2614(94)00185-5http://dx.doi.org/10.1016/0009-2614(94)00185-5
MAKHOV V N, KHAIDUKOV N M, LO D, et al. Spectroscopic properties of Pr3+ luminescence in complex fluoride crystals [J]. J. Lumin., 2003, 102-103: 638-643. doi: 10.1016/s0022-2313(02)00606-3http://dx.doi.org/10.1016/s0022-2313(02)00606-3
LEVEY C G, GLYNN T J, YEN W M. Excitation of the 1S0 state of Pr3+ in crystal hosts [J]. J. Lumin., 1984, 31-32: 245-247. doi: 10.1016/0022-2313(84)90261-8http://dx.doi.org/10.1016/0022-2313(84)90261-8
GUMANSKAYA E G, KORZHIK M V, SMIRNOVA S A, et al. Interconfiguration luminescence of Pr3+ ions in Y3Al5O12 and YAlO3 single crystals [J]. Opt. Spectrosc., 1992, 72(1): 86-88.
赖昌, 王广川. YAlO3晶体中Pr3+的4f2能级 [J]. 发光学报, 2011, 32(9): 885-889. doi: 10.3788/fgxb20113209.0885http://dx.doi.org/10.3788/fgxb20113209.0885
LAI C, WANG G C. The 4f2 energy levels of Pr3+ doped YAlO3 crystal [J]. Chin. J. Lumin., 2011, 32(9): 885-889. (in Chinese). doi: 10.3788/fgxb20113209.0885http://dx.doi.org/10.3788/fgxb20113209.0885
RODNYI P A, MIKHRIN S B, DORENBOS P, et al. The observation of photon cascade emission in Pr3+-doped compounds under X-ray excitation [J]. Opt. Commun., 2002, 204(1-6): 237-245. doi: 10.1016/s0030-4018(02)01243-9http://dx.doi.org/10.1016/s0030-4018(02)01243-9
CORNACCHIA F, RICHTER A, HEUMANN E, et al. Visible laser emission of solid state pumped LiLuF4∶Pr3+ [J]. Opt. Express, 2007, 15(3): 992-1002. doi: 10.1364/oe.15.000992http://dx.doi.org/10.1364/oe.15.000992
METZ P W, HASSE K, PARISI D, et al. Continuous-wave Pr3+∶BaY2F8 and Pr3+∶LiYF4 lasers in the cyan-blue spectral region [J]. Opt. Lett., 2014, 39(17): 5158-5161. doi: 10.1364/ol.39.005158http://dx.doi.org/10.1364/ol.39.005158
SOTTILE A, PARISI D, TONELLI M. Multiple polarization orange and red laser emissions with Pr∶BaY2F8 [J]. Opt. Express, 2014, 22(11): 13784-13791. doi: 10.1364/oe.22.013784http://dx.doi.org/10.1364/oe.22.013784
METZ P W, MÜLLER S, REICHERT F, et al. Wide wavelength tunability and green laser operation of diode-pumped Pr3+∶KY3F10 [J]. Opt. Express, 2013, 21(25): 31274-31281. doi: 10.1364/oe.21.031274http://dx.doi.org/10.1364/oe.21.031274
YU H, JIANG D P, TANG F, et al. Enhanced photoluminescence and initial red laser operation in Pr∶CaF2 crystal via co-doping Gd3+ ions [J]. Mater. Lett., 2017, 206: 140-142. doi: 10.1016/j.matlet.2017.07.019http://dx.doi.org/10.1016/j.matlet.2017.07.019
REICHERT F, MOGLIA F, MARZAHL D T, et al. Diode pumped laser operation and spectroscopy of Pr3+∶LaF3 [J]. Opt. Express, 2012, 20(18): 20387-20395. doi: 10.1364/oe.20.020387http://dx.doi.org/10.1364/oe.20.020387
SATTAYAPORN S, LOISEAU P, AKA G, et al. Crystal growth, spectroscopy and laser performances of Pr3+∶Sr0.7La0.3Mg0.3Al11. 7O19 (Pr∶ASL) [J]. Opt. Express, 2018, 26(2): 1278-1289. doi: 10.1364/oe.26.001278http://dx.doi.org/10.1364/oe.26.001278
ZHOU S D, PAN Y X, LI N, et al. Spectroscopy and diode-pumped laser operation of Pr∶LaMgAl11O19 crystal [J]. Opt. Mater., 2019, 89: 14-17. doi: 10.1016/j.optmat.2018.12.053http://dx.doi.org/10.1016/j.optmat.2018.12.053
MARZAHL D T, REICHERT F, FECHNER M, et al. Laser operation and spectroscopy of Pr3+∶LaMgAl11O19 [C]. EPS‐QEOD Europhoton Conference, Stockholm, 2012. doi: 10.1364/oe.20.020387http://dx.doi.org/10.1364/oe.20.020387
FIBRICH M, JELÍNKOVÁ H, ŠULC J, et al. Pr∶YAlO3 microchip laser at 662 nm [J]. Laser Phys. Lett., 2010, 8(2): 116-119.
FIBRICH M, ŠULC J, JELÍNKOVÁ H. Pr∶YAlO3 laser generation in the green spectral range [J]. Opt. Lett., 2013, 38(23): 5024-5027. doi: 10.1364/ol.38.005024http://dx.doi.org/10.1364/ol.38.005024
FIBRICH M, ŠULC J, JELÍNKOVÁ H. Power-scaling of a Pr∶YAlO3 microchip laser operating at 747 nm wavelength at room temperature [J]. Laser Phys. Lett., 2014, 11(10): 105802-1-3. doi: 10.1088/1612-2011/11/10/105802http://dx.doi.org/10.1088/1612-2011/11/10/105802
MARZAHL D T, REICHERT F, METZ P W, et al. Efficient laser operation of diode-pumped Pr3+, Mg2+∶SrAl12O19 [J]. Appl. Phys. B, 2014, 116(1): 109-113. doi: 10.1007/s00340-013-5655-3http://dx.doi.org/10.1007/s00340-013-5655-3
REICHERT F, CALMANO T, MÜLLER S, et al. Efficient visible laser operation of Pr, Mg∶SrAl12O19 channel waveguides [J]. Opt. Lett., 2013, 38(15): 2698-2701. doi: 10.1364/ol.38.002698http://dx.doi.org/10.1364/ol.38.002698
CHEUNG Y M, GAYEN S K. Excited-state absorption in Pr3+∶Y3Al5O12 [J]. Phys. Rev. B, 1994, 49(21): 14827-14835. doi: 10.1103/physrevb.49.14827http://dx.doi.org/10.1103/physrevb.49.14827
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment.Ⅰ. Fluoride compounds [J]. Phys. Rev. B, 2000, 62(23): 15640-15649.
DORENBOS P. The 5d level positions of the trivalent lanthanides in inorganic compounds [J]. J. Lumin., 2000, 91(3-4): 155-176. doi: 10.1016/s0022-2313(00)00229-5http://dx.doi.org/10.1016/s0022-2313(00)00229-5
DORENBOS P. The 4fn→4fn-1 5d transitions of the trivalent lanthanides in halogenides and chalcogenides [J]. J. Lumin., 2000, 91(1-2): 91-106. doi: 10.1016/s0022-2313(00)00197-6http://dx.doi.org/10.1016/s0022-2313(00)00197-6
KALUSNIAK S, CASTELLANO-HERNÁNDEZ E, YALÇINOĞLU H, et al. Spectroscopic properties of Tb3+ as an ion for visible lasers [J]. Appl. Phys. B, 2022, 128(2): 33. doi: 10.1007/s00340-022-07759-1http://dx.doi.org/10.1007/s00340-022-07759-1
JORGENSEN C K. “Symbiotic” ligands, hard and soft central atoms [J]. Inorg. Chem., 1964, 3(8): 1201-1202. doi: 10.1021/ic50018a036http://dx.doi.org/10.1021/ic50018a036
VAN DER KOLK E, DORENBOS P, VINK A P, et al. Vacuum ultraviolet excitation and emission properties of Pr3+ and Ce3+ in MSO4 (M=Ba, Sr, and Ca) and predicting quantum splitting by Pr3+ in oxides and fluorides [J]. Phys. Rev. B, 2001, 64(19): 195129-1-12.
LAROCHE M, DOUALAN J L, GIRARD S, et al. Experimental and theoretical investigations of the 4f2→4f5d ground-state and excited-state absorption spectra of Pr3+ in LiYF4 [J]. J. Opt. Soc. Am. B, 2000, 17(7): 1291-1303. doi: 10.1364/josab.17.001291http://dx.doi.org/10.1364/josab.17.001291
LAROCHE M, BRAUD A, GIRARD S, et al. Spectroscopic investigations of the 4f5d energy levels of Pr3+ in fluoride crystals by excited-state absorption and two-step excitation measurements [J]. J. Opt. Soc. Am. B, 1999, 16(12): 2269-2277. doi: 10.1364/josab.16.002269http://dx.doi.org/10.1364/josab.16.002269
DIEHL R, BRANDT G. Crystal structure refinement of YAlO3, a promising laser material [J]. Mater. Res. Bull., 1975, 10(2): 85-90. doi: 10.1016/0025-5408(75)90125-7http://dx.doi.org/10.1016/0025-5408(75)90125-7
BRUSHTEǏN A I. Hopping mechanism of energy transfer [J]. Sov. J. Exp. Theor. Phys., 1972, 35(5): 882-885.
SELZER P M, HAMILTON D S, FLACH R, et al. Phonon-assisted energy migration in Pr3+∶LaF3 [J]. J. Lumin., 1976, 12-13: 737-741. doi: 10.1016/0022-2313(76)90169-1http://dx.doi.org/10.1016/0022-2313(76)90169-1
SCHUURMANS M F H, VAN DIJK J M F. On radiative and non-radiative decay times in the weak coupling limit [J]. Phys. B+C, 1984, 123(2): 131-155. doi: 10.1016/0378-4363(84)90117-7http://dx.doi.org/10.1016/0378-4363(84)90117-7
VAN DIJK J M F, SCHUURMANS M F H. On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f‐4f transitions in rare‐earth ions [J]. J. Chem. Phys., 1983, 78(9): 5317-5323. doi: 10.1063/1.445485http://dx.doi.org/10.1063/1.445485
NAIK R C, KARANJIKAR N P, RAZVI M A N. Concentration quenching of fluorescence from 1D2 state of Pr3+ in YPO4 [J]. J. Lumin., 1992, 54(3): 139-144. doi: 10.1016/0022-2313(92)90001-phttp://dx.doi.org/10.1016/0022-2313(92)90001-p
VAN VLIET J P M, BLASSE G. Luminescence properties of the Pr3+ ion in La1⁃xPrxMgAl11O19 [J]. Chem. Phys. Lett., 1988, 143(3): 221-224. doi: 10.1016/0009-2614(88)87370-6http://dx.doi.org/10.1016/0009-2614(88)87370-6
MORGAN G P, HUBER D L, YEN W M. The nature of the 3P0 fluorescence quenching processes in LaF3∶Pr3+ [J]. J. Lumin., 1986, 35(5): 277-287. doi: 10.1016/0022-2313(86)90051-7http://dx.doi.org/10.1016/0022-2313(86)90051-7
HOLSTEIN T, LYO S K, ORBACH R. Phonon-assisted energy transport in inhomogeneously broadened systems [J]. Phys. Rev. Lett., 1976, 36(15): 891-894. doi: 10.1103/physrevlett.36.891http://dx.doi.org/10.1103/physrevlett.36.891
HUBER D L, HAMILTON D S, BARNETT B. Time-dependent effects in fluorescent line narrowing [J]. Phys. Rev. B, 1977, 16(10): 4642-4650. doi: 10.1103/physrevb.16.4642http://dx.doi.org/10.1103/physrevb.16.4642
HAMILTON D S, SELZER P M, YEN W M. Spectral energy transfer in PrF3, PrCl3 [J]. Phys. Rev. B, 1977, 16(5): 1858-1869. doi: 10.1103/physrevb.16.1858http://dx.doi.org/10.1103/physrevb.16.1858
FAN H X, CHEN Y, YAN T, et al. Crystal growth, spectral properties and Judd-Ofelt analysis of Pr3+∶LaMgAl11O19 [J]. J. Alloys Compd., 2018, 767: 938-943.
WEBER M J. Probabilities for radiative and nonradiative decay of Er3+ in LaF3 [J]. Phys. Rev., 1967, 157(2): 262-272. doi: 10.1103/physrev.157.262http://dx.doi.org/10.1103/physrev.157.262
VIAL J C, BUISSON R. Evidence for energy transfer induced by superexchange in LaF3∶Pr3+ [J]. J. Physique Lett., 1982, 43(21): 745-753. doi: 10.1051/jphyslet:019820043021074500http://dx.doi.org/10.1051/jphyslet:019820043021074500
SONI H R, GUPTA S K, TALATI M, et al. Ground state and lattice dynamical study of ionic conductors CaF2, SrF2 and BaF2 using density functional theory [J]. J. Phys. Chem. Solids, 2011, 72(8): 934-939. doi: 10.1016/j.jpcs.2011.04.018http://dx.doi.org/10.1016/j.jpcs.2011.04.018
于浩. Re(Pr, Eu, Dy)∶CaF2晶体光谱与可见光激光性能研究 [D]. 上海: 中国科学院上海硅酸盐研究所, 2019.
YU H. Investigation on Spectral Properties and Visible Laser Performance of Re(Pr, Eu, Dy) Doped Calcium Fluoride Crystals [D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2019. (in Chinese)
KHIARI S, VELAZQUEZ M, MONCORGÉ R, et al. Red-luminescence analysis of Pr3+ doped fluoride crystals [J]. J. Alloys Compd., 2008, 451(1-2): 128-131. doi: 10.1016/j.jallcom.2007.04.233http://dx.doi.org/10.1016/j.jallcom.2007.04.233
PAPADOPOULOS A D, RAPTIS Y S, ANASTASSAKIS E. Raman study of SrF2 under uniaxial stress [J]. Solid State Commun., 1986, 58(9): 645-648. doi: 10.1016/0038-1098(86)90238-3http://dx.doi.org/10.1016/0038-1098(86)90238-3
YI G Q, MEI B C, LI W W, et al. Synthesis and luminescence characterization of Pr3+, Gd3+ co-doped SrF2 transparent ceramics [J]. J. Am. Ceram. Soc., 2020, 103(1): 279-286. doi: 10.1111/jace.16728http://dx.doi.org/10.1111/jace.16728
REICHERT F, MOGLIA F, METZ P W, et al. Prospects of holmium-doped fluorides as gain media for visible solid state lasers [J]. Opt. Mater. Express, 2015, 5(1): 88-101. doi: 10.1364/ome.5.000088http://dx.doi.org/10.1364/ome.5.000088
CORNACCHIA F, DI LIETO A, TONELLI M, et al. Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals [J]. Opt. Express, 2008, 16(20): 15932-15941. doi: 10.1364/oe.16.015932http://dx.doi.org/10.1364/oe.16.015932
BADTKE M, TANAKA H, OLLENBURG L J, et al. Passively Q-switched 8.5-ns Pr3+∶YLF laser at 640 nm [J]. Appl. Phys. B, 2021, 127(6): 83-1-6. doi: 10.1007/s00340-021-07629-2http://dx.doi.org/10.1007/s00340-021-07629-2
MONCORGE R. Laser crystals with low phonon frequencies [J]. Ann. Chim. Sci. Mat., 2003, 28(6): 5-20. doi: 10.1016/j.anncsm.2003.09.004http://dx.doi.org/10.1016/j.anncsm.2003.09.004
MALTA O L, ANTIC-FIDANCEV E, LEMAITRE-BLAISE M, et al. Up-conversion in YAG∶Pr3+: evidence for a stepwise photon absorption process [J]. Chem. Phys. Lett., 1986, 129(6): 557-561. doi: 10.1016/0009-2614(86)80400-6http://dx.doi.org/10.1016/0009-2614(86)80400-6
WEBER M J. Multiphonon relaxation of rare-earth ions in yttrium orthoaluminate [J]. Phys. Rev. B, 1973, 8(1): 54-64. doi: 10.1103/physrevb.8.54http://dx.doi.org/10.1103/physrevb.8.54
MALINOWSKI M, GARAPON C, JOUBERT M F, et al. One-and two-photon spectroscopy of Pr3+-doped YAlO3 crystals [J]. J. Phys.: Condens. Matter., 1995, 7(1): 199-211. doi: 10.1088/0953-8984/7/1/017http://dx.doi.org/10.1088/0953-8984/7/1/017
JU M, LIANG H, ZHU Y S, et al. Insights into the microstructures and energy levels of Pr3+-doped YAlO3 scintillating crystals [J]. Inorg. Chem., 2021, 60(7): 5107-5113. doi: 10.1021/acs.inorgchem.1c00021http://dx.doi.org/10.1021/acs.inorgchem.1c00021
MERKLE L D, ZANDI B, MONCORGÉ R, et al. Spectroscopy and laser operation of Pr, Mg∶SrAl12O19 [J]. J. Appl. Phys., 1996, 79(4): 1849-1856. doi: 10.1063/1.361085http://dx.doi.org/10.1063/1.361085
CAPOBIANCO J A, VETRONE F, BOYER J C, et al. Visible upconversion of Er3+ doped nanocrystalline and bulk Lu2O3 [J]. Opt. Mater., 2002, 19(2): 259-268. doi: 10.1016/s0925-3467(01)00188-4http://dx.doi.org/10.1016/s0925-3467(01)00188-4
YEN W M, LEVEY C G, HUANG S H, et al. Multiphoton and multiion effects in the spectra of Pr1-xLaxF3 [J]. J. Lumin., 1981, 24-25: 659-662. doi: 10.1016/0022-2313(81)90065-xhttp://dx.doi.org/10.1016/0022-2313(81)90065-x
HEGARTY J, HUBER D L, YEN W M. Fluorescence quenching by cross relaxation in LaF3∶Pr3+ [J]. Phys. Rev. B, 1982, 25(9): 5638-5645. doi: 10.1103/physrevb.25.5638http://dx.doi.org/10.1103/physrevb.25.5638
INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1965, 43(6): 1978-1989. doi: 10.1063/1.1697063http://dx.doi.org/10.1063/1.1697063
YOKOTA M, TANIMOTO O. Effects of diffusion on energy transfer by resonance [J]. J. Phys. Soc. Jpn., 1967, 22(3): 779-784. doi: 10.1143/jpsj.22.779http://dx.doi.org/10.1143/jpsj.22.779
HUBER D L. Fluorescence in the presence of traps [J]. Phys. Rev. B, 1979, 20(6): 2307-2314. doi: 10.1103/physrevb.20.2307http://dx.doi.org/10.1103/physrevb.20.2307
许崇磊(1996-),男,山东临沂人,硕博连读研究生,2019年于青岛科技大学获得学士学位,主要从事可见光激光晶体的研究。. doi: 10.1103/physrevb.20.2307http://dx.doi.org/10.1103/physrevb.20.2307
0
Views
990
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution