浏览全部资源
扫码关注微信
1.湖北大学物理与电子科学学院 湖北省铁电压电材料实验室, 湖北 武汉 430062
2.湖北大学 有机功能分子合成与应用教育部重点实验室, 湖北 武汉 430062
Published:05 August 2022,
Received:29 April 2022,
Revised:14 May 2022,
移动端阅览
解国奥,王亚琦,李根等.基于CuSCN/Cs3Bi2I6Br3纳米薄膜的p‐i‐n型光电探测器[J].发光学报,2022,43(08):1256-1265.
XIE Guo-ao,WANG Ya-qi,LI Gen,et al.All-inorganic p-i-n Photodetector Based on Lead-free CuSCN/Cs3Bi2I6Br3 Nanofilm[J].Chinese Journal of Luminescence,2022,43(08):1256-1265.
解国奥,王亚琦,李根等.基于CuSCN/Cs3Bi2I6Br3纳米薄膜的p‐i‐n型光电探测器[J].发光学报,2022,43(08):1256-1265. DOI: 10.37188/CJL.20220165.
XIE Guo-ao,WANG Ya-qi,LI Gen,et al.All-inorganic p-i-n Photodetector Based on Lead-free CuSCN/Cs3Bi2I6Br3 Nanofilm[J].Chinese Journal of Luminescence,2022,43(08):1256-1265. DOI: 10.37188/CJL.20220165.
卤化铅钙钛矿具有高光吸收系数、长载流子扩散长度和高荧光量子效率等优异光电特性,成为当下光电探测器(PDs)研究领域的热点。但卤化铅钙钛矿的高生物毒性和低环境稳定性制约了该类器件的发展和应用,因此寻找低毒稳定的材料尤为重要。到目前为止,Sn、Ge、Sb、Bi等材料都已得到研究,其中铋基钙钛矿因其稳定、无毒和宽带隙等特性成为候选材料之一。影响PDs性能的因素很多,其中抑制暗电流是提升器件性能的重要手段之一。本文通过溶液旋涂无机化合物CuSCN取代传统PEDOT∶PSS作为空穴传输层(HTL),制备了结构为ITO/CuSCN/Cs
3
Bi
2
I
6
Br
3
/ZnO/Ag的p‐i‐n型光电探测器。CuSCN最低未占分子轨道(LUMO)能级为 -1.5 eV,与ITO电子注入势垒高达3.3 eV,远高于PEDOT∶PSS与ITO的电子注入势垒(1.8 eV),反向偏压下工作更能有效阻挡电子从ITO电极的注入,因此降低了探测器的暗电流。器件在自供电条件425 nm单色光照射下光电流达6.87×10
-6
A,暗电流低至3.52×10
-11
A,开关比超过10
5
,相比于基于PEDOT∶PSS空穴传输层的探测器提升了2个数量级。此外,该探测器的上升和下降时间都小于0.12 s,均优于基于PEDOT∶PSS空穴传输层的探测器,这可归因于CuSCN比PEDOT∶PSS具有更高的载流子传输迁移率。结果表明,ITO/CuSCN/Cs
3
Bi
2
I
6
Br
3
/ZnO/Ag结构的光电探测器具有自供电、高开关比、稳定、无毒等优点,为实现商业化提供了一种可行策略。
Lead halide perovskite is a popular research field in photodetectors(PDs) due to its excellent photoelectric characteristics such as high light absorption coefficient, long carrier diffusion length and high fluorescence quantum efficiency. However, heavy biological toxicity and low environmental stability restrict the development and application of this kind of devices. So far, Sn, Ge, Sb, Bi and other materials have been studied, in which bismuth-based perovskites have become one of the candidate materials due to stability, non-toxicity and wide band gap. The performance of PDs is limited by many factors, and dark current suppression is one of the important means to improve device performance. Based on the traditional hole transport layer(HTL) of PEDOT∶PSS replaced by the inorganic compound CuSCN through spin-coating, the p-i-n type photodetectors with an architecture of ITO/CuSCN/Cs
3
Bi
2
I
6
Br
3
/ZnO/Ag were fabricated. CuSCN can effectively block electron injecting through the interface between the hole transport layer and the perovskite absorption layer, because the lowest unoccupied molecular orbital(LUMO) energy level of CuSCN is -1.5 eV, the electron injection barrier with ITO is as high as 3.3 eV, which is much higher than that of PEDOT∶PSS and ITO(1.8 eV). Under self-powered condition, the dark current of the device was as low as 3.52×10
-11
A. Its on/off ratio reaches 10
5
, which is two orders of magnitude higher than the detector of PEDOT∶PSS. In addition, the rise and fall time of the detector are less than 0.1 s and 0.12 s, which are better than the detector of PEDOT∶PSS. This result can be attributed to the higher carrier transport mobility of CuSCN higher than PEDOT∶PSS. The results show that the structure of ITO/CuSCN/Cs
3
Bi
2
I
6
Br
3
/ZnO/Ag photodetector posseses many characteristics, such as self-driven, high on/off ratio, non-toxic and stable. It provides a feasible strategy for realizing commercialization.
无铅钙钛矿光电探测器空穴传输层暗电流
lead-free perovskitephotodetectorhole transport layerdark current
ARMIN A, JANSEN-VAN VUUREN R D, KOPIDAKIS N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes [J]. Nat. Commun., 2015, 6: 6343-1-8. doi: 10.1038/ncomms7343http://dx.doi.org/10.1038/ncomms7343
BÜCHELE P, RICHTER M, TEDDE S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors [J]. Nat. Photonics, 2015, 9(12): 843-848. doi: 10.1038/nphoton.2015.216http://dx.doi.org/10.1038/nphoton.2015.216
LI C L, LU J R, ZHAO Y, et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system [J]. Small, 2019, 15(44): 1903599-1-10. doi: 10.1002/smll.201903599http://dx.doi.org/10.1002/smll.201903599
SHEN L, FANG Y J, WANG D, et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection [J]. Adv. Mater., 2016, 28(48): 10794-10800. doi: 10.1002/adma.201603573http://dx.doi.org/10.1002/adma.201603573
BUZHAN P, DOLGOSHEIN B, ILYIN A, et al. An advanced study of silicon photomultiplier [J]. Adv. Technol., 2015, 21, 54(6): 32-35.
魏瑶琪, 全家乐, 赵庆强, 等. 一种基于n-ZnS/p-CuSCN纳米薄膜的具有高开关比和稳定性的紫外光电探测器 [J]. 发光学报, 2022, 43(6) :911-921. doi: 10.37188/cjl.20220069http://dx.doi.org/10.37188/cjl.20220069
WEI Y Q, QUAN J L, ZHAO Q Q, et al. A stable UV photodetector based on n-ZnS/p-CuSCN nanofilm with a high on/off ratio [J]. Chin. J. Lumin., 2022, 43(6) :911-921. (in English). doi: 10.37188/cjl.20220069http://dx.doi.org/10.37188/cjl.20220069
STRELTSOV A M, MOLL K D, GAETA A L, et al. Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode [J]. Appl. Phys. Lett., 1999, 75(24): 3778-3780. doi: 10.1063/1.125453http://dx.doi.org/10.1063/1.125453
YOU D T, XU C X, ZHAO J, et al. Single-crystal ZnO/AlN core/shell nanowires for ultraviolet emission and dual-color ultraviolet photodetection [J]. Adv. Opt. Mater., 2019, 7: 1801522-1-8. doi: 10.1002/adom.201801522http://dx.doi.org/10.1002/adom.201801522
LIU X, GU L L, ZHANG Q P, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity [J]. Nat. Commun., 2014, 5: 4007-1-9. doi: 10.1038/ncomms5007http://dx.doi.org/10.1038/ncomms5007
ZHANG D Z, LIU C Y, YIN B, et al. Organics filled one-dimensional TiO2 nanowires array ultraviolet detector with enhanced photo-conductivity and dark-resistivity [J]. Nanoscale, 2017, 9(26): 9095-9103. doi: 10.1039/c7nr03408chttp://dx.doi.org/10.1039/c7nr03408c
HE Z Y, LIU Q, HOU H L, et al. Tailored electrospinning of WO3 nanobelts as efficient ultraviolet photodetectors with photo-dark current ratios up to 1 000 [J]. ACS Appl. Mater. Interfaces, 2015, 7(20): 10878-10885. doi: 10.1021/acsami.5b02020http://dx.doi.org/10.1021/acsami.5b02020
LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices [J]. Adv. Opt. Photonics, 2018, 10(1): 43-110. doi: 10.1364/aop.10.000043http://dx.doi.org/10.1364/aop.10.000043
LANY S, ZUNGER A. Anion vacancies as a source of persistent photoconductivity in Ⅱ-Ⅵ and chalcopyrite semiconductors [J]. Phys. Rev., 2005, 72(3): 035215-1-13. doi: 10.1103/physrevb.72.035215http://dx.doi.org/10.1103/physrevb.72.035215
NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells [J]. Nano Lett., 2013, 13(4): 1764-1769. doi: 10.1021/nl400349bhttp://dx.doi.org/10.1021/nl400349b
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13(7): 460-466. doi: 10.1038/s41566-019-0398-2http://dx.doi.org/10.1038/s41566-019-0398-2
HAN B N, CAI B, SHAN Q S, et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering [J]. Adv. Funct. Mater., 2018, 28(47): 1804285-1-8. doi: 10.1002/adfm.201804285http://dx.doi.org/10.1002/adfm.201804285
BAO C X, YANG J, BAI S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications [J]. Adv. Mater., 2018, 30(38): 1803422-1-8. doi: 10.1002/adma.201803422http://dx.doi.org/10.1002/adma.201803422
赵雪帆, 朱云飞, 孟凡斌, 等. 非铅钙钛矿光伏材料与器件研究进展 [J]. 发光学报, 2022,43(6):817-832. doi: 10.37188/CJL.20220050http://dx.doi.org/10.37188/CJL.20220050
ZHAO X F, ZHU Y F, MENG F B, et al. Progress of lead-free perovskite photovoltaic materials and devices [J]. Chin. J. Lumin., 2022,43(6):817-832. (in Chinese). doi: 10.37188/CJL.20220050http://dx.doi.org/10.37188/CJL.20220050
LIU D, YU B B, LIAO M, et al. Self-powered and broadband lead-free inorganic perovskite photodetector with high stability [J]. ACS Appl. Mater. Interfaces, 2020, 12(27): 30530-30537. doi: 10.1021/acsami.0c05636http://dx.doi.org/10.1021/acsami.0c05636
霍婷婷, 张冬冬, 施祥蕾, 等. 基于碳纳米薄膜/砷化镓范德华异质结的高性能自驱动光电探测器研究 [J]. 中国光学, 2022, 15(2): 373-386. doi: 10.37188/CO.2021-0149http://dx.doi.org/10.37188/CO.2021-0149
HUO T T, ZHANG D D, SHI X L, et al. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions [J]. Chin. Opt., 2022, 15(2): 373-386. (in Chinese). doi: 10.37188/CO.2021-0149http://dx.doi.org/10.37188/CO.2021-0149
CHIN X Y, CORTECCHIA D, YIN J, et al. Lead iodide perovskite light-emitting field-effect transistor [J]. Nat. Commun., 2015, 6: 7383-1-9. doi: 10.1038/ncomms8383http://dx.doi.org/10.1038/ncomms8383
NIU T Q, ZHU W Y, ZHANG Y H, et al. D-A-π-A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells [J]. Joule, 2021, 5(1): 249-269. doi: 10.1016/j.joule.2020.12.003http://dx.doi.org/10.1016/j.joule.2020.12.003
STEELE J A, PUECH P, KESHAVARZ M, et al. Giant electron-phonon coupling and deep conduction band resonance in metal halide double perovskite [J]. ACS Nano, 2018, 12(8): 8081-8090. doi: 10.1021/acsnano.8b02936http://dx.doi.org/10.1021/acsnano.8b02936
JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells [J]. Nat. Mater., 2014, 13(9): 897-903. doi: 10.1038/nmat4014http://dx.doi.org/10.1038/nmat4014
HAWASH Z, ONO L K, QI Y B, et al. Recent advances in Spiro-MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells [J]. Adv. Mater. Interfaces, 2018, 5(1): 1700623-1-22. doi: 10.1002/admi.201700623http://dx.doi.org/10.1002/admi.201700623
MATEBESE F, TAZIWA R, MUTUKWA D. Progress on the synthesis and application of CuSCN inorganic hole transport material in perovskite solar cells [J]. Materials, 2018, 11(12): 2592-1-19. doi: 10.3390/ma11122592http://dx.doi.org/10.3390/ma11122592
SHEN K, XU H, LI X, et al. Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 quantum dots [J]. Adv. Mater., 2020, 32(22): 2000004-1-10. doi: 10.1002/adma.202000004http://dx.doi.org/10.1002/adma.202000004
MA S, QIAO W Y, CHENG T, et al. Optical-electrical-chemical engineering of PEDOT∶PSS by incorporation of hydrophobic nafion for efficient and stable perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3902-3911. doi: 10.1021/acsami.7b19053http://dx.doi.org/10.1021/acsami.7b19053
XUE Q F, CHEN G T, LIU M Y, et al. Improving film formation and photovoltage of highly efficient inverted-type perovskite solar cells through the incorporation of new polymeric hole selective layers [J]. Adv. Energy Mater., 2016, 6(5): 1502021-1-9. doi: 10.1002/aenm.201502021http://dx.doi.org/10.1002/aenm.201502021
LI Y, SHI Z F, LEI L Z, et al. Photodetectors: ultrastable lead-free double perovskite photodetectors with imaging capability [J]. Adv. Mater. Interfaces, 2019, 6(10): 1970061. doi: 10.1002/admi.201970061http://dx.doi.org/10.1002/admi.201970061
0
Views
286
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution