浏览全部资源
扫码关注微信
1.江苏大学 材料科学与工程学院, 江苏 镇江 212013
2.中国科学院上海硅酸盐研究所 透明光功能无机材料重点实验室, 上海 201899
3.中国科学院大学 材料与光电研究中心, 北京 100049
4.Istituto di Fisica Applicata “N. Carrara”, Consiglio Nazionale delle Ricerche, CNR⁃IFAC, Via Madonna del Piano 10C, 50019 Sesto Fiorentino(Fi), Italy
5.Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, CNR‑INO, Via Madonna del Piano 10C, 50019 Sesto Fiorentino(Fi), Italy
Published:05 November 2022,
Received:23 April 2022,
Revised:11 May 2022,
扫 描 看 全 文
刘强,武龙飞,李晓英等.黄光激光用Dy,Tb∶LuAG透明陶瓷的制备与性能研究[J].发光学报,2022,43(11):1733-1740.
LIU Qiang,WU Long-fei,LI Xiao-ying,et al.Fabrication and Characterization of Dy,Tb∶LuAG Transparent Ceramics for Yellow Lasers[J].Chinese Journal of Luminescence,2022,43(11):1733-1740.
刘强,武龙飞,李晓英等.黄光激光用Dy,Tb∶LuAG透明陶瓷的制备与性能研究[J].发光学报,2022,43(11):1733-1740. DOI: 10.37188/CJL.20220153.
LIU Qiang,WU Long-fei,LI Xiao-ying,et al.Fabrication and Characterization of Dy,Tb∶LuAG Transparent Ceramics for Yellow Lasers[J].Chinese Journal of Luminescence,2022,43(11):1733-1740. DOI: 10.37188/CJL.20220153.
以NH
4
HCO
3
为沉淀剂,通过共沉淀法合成了分散性良好的Dy,Tb∶LuAG纳米粉体,并研究了前驱体的热分解行为、粉体的物相及显微形貌。在不添加任何烧结助剂的情况下,采用真空预烧结合热等静压烧结技术首次制备出高透明的Dy,Tb∶LuAG陶瓷,并研究了预烧温度对陶瓷显微形貌及光学质量的影响。当预烧温度为1 600 ℃时,退火后的Dy,Tb∶LuAG陶瓷(厚度为1.5 mm)在578 nm处的直线透过率达到83.6%,平均晶粒尺寸为0.9 μm。此外,退火后的3%Dy,1%Tb∶LuAG透明陶瓷在447 nm的吸收截面积为1.3×10
-21
cm
2
,半高宽为3.0 nm,与商用GaN蓝色激光二极管具有良好的匹配性。研究表明,Dy,Tb∶LuAG透明陶瓷在黄光激光领域具有潜在的应用价值。
3%Dy,1%Tb∶LuAG(Dy,Tb∶LuAG) nanopowders with good dispersibility were synthesized by the co-precipitation method using NH
4
HCO
3
as a precipitant. The thermal decomposition behavior of the precursor, and the phase and microstructure of powders were studied. Dy,Tb∶LuAG ceramics with high transparency were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP) post-treatment without any sintering additives for the first time. The influences of pre-sintering temperature on the microstructure and the optical quality of the ceramics were investigated. When the pre-sintering temperature is 1 600 ℃, the in-line transmittance of the annealed Dy,Tb∶LuAG ceramics(1.5 mm in thickness) reaches 83.6% at 578 nm, and the average grain size of the annealed ceramics is 0.9 μm. In addition, the absorption cross section of the 3%Dy,1%Tb∶LuAG ceramics at 447 nm is calculated to be 1.3×10
-21
cm
2
, with a full width at half maximum(FWHM) of 3.0 nm, which matches that of commercial GaN blue laser diodes. This study shows that Dy,Tb∶LuAG transparent ceramics have potential application value in the yellow lasers.
Dy,Tb∶LuAG透明陶瓷共沉淀法热等静压烧结
Dy,Tb∶LuAGtransparent ceramicsco-precipitation methodhot isostatic pressing
YADAV N K, JAYADEV C, MOHAN A, et al. Subthreshold micropulse yellow laser(577 nm) in chronic central serous chorioretinopathy: safety profile and treatment outcome [J]. Eye, 2015, 29(2): 258-265. doi: 10.1038/eye.2014.315http://dx.doi.org/10.1038/eye.2014.315
PIZZOCARO M, COSTANZO G A, GODONE A, et al. Realization of an ultrastable 578-nm laser for an Yb lattice clock [J]. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control, 2012, 59(3): 426-431. doi: 10.1109/tuffc.2012.2211http://dx.doi.org/10.1109/tuffc.2012.2211
BOWMAN S R, O’CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers [J]. Opt. Express, 2012, 20(12): 12906-12911. doi: 10.1364/oe.20.012906http://dx.doi.org/10.1364/oe.20.012906
PENG F, LIU W P, LUO J Q, et al. Study of growth, defects and thermal and spectroscopic properties of Dy∶GdScO3 and Dy,Tb∶GdScO3 as promising 578 nm laser crystals [J]. CrystEngComm, 2018, 20(40): 6291-6299. doi: 10.1039/c8ce01254ghttp://dx.doi.org/10.1039/c8ce01254g
BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy,Tb∶LiLuF4 [J]. Opt. Lett., 2014, 39(23): 6628-6631. doi: 10.1364/ol.39.006628http://dx.doi.org/10.1364/ol.39.006628
李长磊, 姚文明, 陈建生, 等. 基于共掺杂Dy-Tb∶YAG晶体的全固态黄光激光特性研究 [J]. 中国激光, 2019, 46(11): 1101008-1-6. doi: 10.3788/CJL201946.1101008http://dx.doi.org/10.3788/CJL201946.1101008
LI C L, YAO W M, CHEN J S, et al. All-solid-state yellow-laser characteristics based on co-doped Dy-Tb∶YAG crystal [J]. Chin. J. Lasers, 2019, 46(11): 1101008-1-6. (in Chinese). doi: 10.3788/CJL201946.1101008http://dx.doi.org/10.3788/CJL201946.1101008
HUANG R S, ZHANG P X, HUANG X B, et al. Enhanced 573 nm yellow emissions of Dy3+ via Tb3+ deactivation in Na2Gd4(MoO4)7 crystal [J]. Opt. Mater. Express, 2017, 7(10): 3673-3679. doi: 10.1364/ome.7.003673http://dx.doi.org/10.1364/ome.7.003673
KRÄNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers [J]. Laser Photonics Rev., 2016, 10(4): 548-568. doi: 10.1002/lpor.201500290http://dx.doi.org/10.1002/lpor.201500290
LUPEI A, LUPEI V, GHEORGHE C, et al. Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics [J]. J. Appl. Phys., 2011, 110(8): 083120-1-8. doi: 10.1063/1.3656718http://dx.doi.org/10.1063/1.3656718
HU Z W, XU X D, WANG J, et al. Fabrication and spectral properties of Dy∶Y2O3 transparent ceramics [J]. J. Eur. Ceram. Soc., 2018, 38(4): 1981-1985. doi: 10.1016/j.jeurceramsoc.2017.12.020http://dx.doi.org/10.1016/j.jeurceramsoc.2017.12.020
HUANG S H, FENG T, JIANG B X, et al. J-O study of a novel Dy-doped Lu3Al5O12 transparent ceramic for potential application in yellow laser generation [J]. J. Lumin., 2021, 231: 117763-1-5. doi: 10.1016/j.jlumin.2020.117763http://dx.doi.org/10.1016/j.jlumin.2020.117763
IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers [J]. J. Am. Ceram. Soc., 1995, 78(4): 1033-1040. doi: 10.1111/j.1151-2916.1995.tb08433.xhttp://dx.doi.org/10.1111/j.1151-2916.1995.tb08433.x
JIANG N, OUYANG C, LIU Y, et al. Effect of air annealing on the optical properties and laser performance of Yb∶YAG transparent ceramics [J]. Opt. Mater., 2019, 95: 109203-1-5. doi: 10.1016/j.optmat.2019.109203http://dx.doi.org/10.1016/j.optmat.2019.109203
WANG Q Q, SHI Y, FENG Y G, et al. Fabrication and laser parameters of Yb∶YAG transparent ceramics with high optical quality [J]. J. Inorg. Mater., 2020, 35(2): 205-210.
YAVETSKIY R P, BALABANOV A E, PARKHOMENKO S V, et al. Effect of starting materials and sintering temperature on microstructure and optical properties of Y2O3∶Yb3+ 5 at% transparent ceramics [J]. J. Adv. Ceram., 2021, 10(1): 49-61. doi: 10.1007/s40145-020-0416-3http://dx.doi.org/10.1007/s40145-020-0416-3
LIU Z Y, TOCI G, PIRRI A, et al. Fabrication, microstructures, and optical properties of Yb∶Lu2O3 laser ceramics from co-precipitated nano-powders [J]. J. Adv. Ceram., 2020, 9(6): 674-682. doi: 10.1007/s40145-020-0403-8http://dx.doi.org/10.1007/s40145-020-0403-8
LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and optical property of Nd∶Lu2O3 transparent ceramics for solid-state laser applications [J]. J. Inorg. Mater., 2021, 36(2): 210-216. doi: 10.15541/jim20200143http://dx.doi.org/10.15541/jim20200143
HUANG X Y, LIU Y M, LIU Y, et al. Fabrication and characterizations of Yb∶YAG transparent ceramics using alcohol-water co-precipitation method [J]. J. Inorg. Mater., 2021, 36(2): 217-224. doi: 10.15541/jim20200231http://dx.doi.org/10.15541/jim20200231
LI S S, MA P, ZHU X W, et al. Post-treatment of nanopowders-derived Nd∶YAG transparent ceramics by hot isostatic pressing [J]. Ceram. Int., 2017, 43(13): 10013-10019. doi: 10.1016/j.ceramint.2017.05.015http://dx.doi.org/10.1016/j.ceramint.2017.05.015
WANG J, MA J, ZHANG J, et al. Yb∶Y2O3 transparent ceramics processed with hot isostatic pressing [J]. Opt. Mater., 2017, 71: 117-120.
HUANG X Y, CHEN G M, WEI J B, et al. Fabrication of Yb,La∶CaF2 transparent ceramics by air pre-sintering with hot isostatic pressing [J]. Opt. Mater., 2021, 116: 111108-1-8. doi: 10.1016/j.optmat.2021.111108http://dx.doi.org/10.1016/j.optmat.2021.111108
BEIL K, FREDRICH-THORNTON S T, TELLKAMP F, et al. Thermal and laser properties of Yb∶LuAG for kW thin disk lasers [J]. Opt. Express, 2010, 18(20): 20712-20722. doi: 10.1364/oe.18.020712http://dx.doi.org/10.1364/oe.18.020712
FU Y L, LI J, LIU Y, et al. Fabrication, microstructure and laser performance of Nd3+-doped Lu3Al5O12 transparent ceramics [J]. J. Eur. Ceram. Soc., 2016, 36(3): 655-661. doi: 10.1016/j.jeurceramsoc.2015.10.001http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.001
ZHOU D, SHI Y, XIE J J, et al. Laser grade Yb∶LuAG transparent ceramic prepared by nanocrystalline pressure-less sintering in reducing H2 [J]. Opt. Mater. Express, 2017, 7(4): 1274-1280.
HU Z W, CHEN X P, LIU X, et al. Fabrication and scintillation properties of Pr∶Lu3Al5O12 transparent ceramics from co-precipitated nanopowders [J]. J. Alloys Compd., 2020, 818: 152885-1-9. doi: 10.1016/j.jallcom.2019.152885http://dx.doi.org/10.1016/j.jallcom.2019.152885
TIAN F, CHEN C, LIU Q, et al. Optimizing co-precipitated Nd∶YAG nanopowders for transparent ceramics [J]. Opt. Mater., 2020, 108: 110427-1-10. doi: 10.1016/j.optmat.2020.110427http://dx.doi.org/10.1016/j.optmat.2020.110427
MARLOT C, BARRAUD E, LE GALLET S, et al. Synthesis of YAG nanopowder by the co-precipitation method: influence of pH and study of the reaction mechanisms [J]. J. Solid State Chem., 2012, 191: 114-120. doi: 10.1016/j.jssc.2012.02.063http://dx.doi.org/10.1016/j.jssc.2012.02.063
DING S J, LI H Y, ZHANG Q L, et al. The investigations of Dy∶YAG and Dy,Tb∶YAG as potentially efficient GaN blue LD pumped solid state yellow laser crystals [J]. J. Lumin., 2021, 237: 118174-1-6. doi: 10.1016/j.jlumin.2021.118174http://dx.doi.org/10.1016/j.jlumin.2021.118174
0
Views
358
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution