浏览全部资源
扫码关注微信
1.南京理工大学材料科学与工程学院 新型显示材料与器件工信部重点实验室, 江苏 南京 210094
2.北京化工大学化学工程学院 有机⁃无机复合材料国家重点实验室, 北京 100029
3.电磁环境效应与光电工程国家级重点实验室, 江苏 南京 210094
Published:05 October 2022,
Received:20 April 2022,
Revised:05 May 2022,
扫 描 看 全 文
王益飞,相恒阳,周怡辉等.基于共价有机聚合物空穴注入层的钙钛矿发光二极管[J].发光学报,2022,43(10):1574-158210.37188/CJL.20220147.
WANG Yi-fei,XIANG Heng-yang,ZHOU Yi-hui,et al.Perovskite Light Emitting Diodes Using Covalent Organic Polymers as Hole Injection Layers[J].Chinese Journal of Luminescence,2022,43(10):1574-158210.37188/CJL.20220147.
王益飞,相恒阳,周怡辉等.基于共价有机聚合物空穴注入层的钙钛矿发光二极管[J].发光学报,2022,43(10):1574-158210.37188/CJL.20220147. DOI:
WANG Yi-fei,XIANG Heng-yang,ZHOU Yi-hui,et al.Perovskite Light Emitting Diodes Using Covalent Organic Polymers as Hole Injection Layers[J].Chinese Journal of Luminescence,2022,43(10):1574-158210.37188/CJL.20220147. DOI:
卤化物钙钛矿(
ABX
3
)量子点及其发光器件具有色纯度高、外量子效率高以及在可见光范围内可调等特点,近年来在照明、显示等领域中展现出巨大潜力。然而,钙钛矿量子点发光二极管(PeQLEDs)的稳定性正成为制约其商业应用的最大障碍,除了钙钛矿发光层本身的稳定性问题之外,传输层的水氧稳定性问题也不可忽略。为了解决这一发展过程中的难题,我们提出了基于氮唑类单体构筑共价有机聚合物材料(COP‐N)替代传统的PEDOT∶PSS作为空穴注入层材料的新型PeQLEDs。我们发现COP‐N具有本征的水氧稳定性,且与PVK之间的空穴注入势垒更小。这些特性使得基于COP⁃N的PeQLED 在取得比PEDOT∶PSS更好发光效率的同时实现了近2倍的稳定性提升。我们认为,这种共价有机聚合物有望成为新型的空穴注入材料,实现高效稳定的钙钛矿电致发光,促进钙钛矿发光器件的发展。
Halide perovskite(
ABX
3
) quantum dots and their light-emitting devices have the characteristics of high color purity, high luminous efficiency, and tunability in the visible light range. In recent years, they have shown great potential in lighting, display and other fields. However, the stability of perovskite quantum dot light-emitting diodes(PeQLEDs) is becoming the biggest obstacle to its commercial application. In addition to the stability of the perovskite light-emitting layer itself, the water-oxygen stability of the transport layer cannot be ignored. This work introduces a novel PeQLEDs that utilize an azole-based monomer-synthesized organic covalent polymer material(COP-N) instead of conventional PEDOT∶PSS as the hole injection layer material. We found that COP-N material has intrinsic water-oxygen stability, as well as a smaller hole injection barrier with PVK. These characteristics enable the COP-N-based PeQLED to achieve nearly twice the stability improvement while achieving better EQE than PEDO∶PSS. We believe that this organic covalent polymer material is expected to be a new type of hole injection material to achieve efficient and stable perovskite electroluminescent device, and promote the development of PeLEDs.
共价有机聚合物空穴注入层钙钛矿量子点发光二极管
covalent organic polymershole injection layerperovskite quantum dotslight-emitting diodes
LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation [J]. Nature, 2022, 603(7899): 73-78. doi: 10.1038/s41586-021-04372-8http://dx.doi.org/10.1038/s41586-021-04372-8
HU Z L, AN Q Z, XIANG H Y, et al. Enhancing the efficiency and stability of triple-cation perovskite solar cells by eliminating excess PbI2 from the perovskite/hole transport layer interface [J]. ACS Appl. Mater. Interfaces, 2020, 12(49): 54824-54832. doi: 10.1021/acsami.0c17258http://dx.doi.org/10.1021/acsami.0c17258
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149http://dx.doi.org/10.1038/nnano.2014.149
CHEN J W, XIANG H Y, WANG J, et al. Perovskite white light emitting diodes: progress, challenges, and opportunities [J]. ACS Nano, 2021, 15(11): 17150-17174. doi: 10.1021/acsnano.1c06849http://dx.doi.org/10.1021/acsnano.1c06849
XIANG H Y, WANG R, CHEN J W, et al. Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer [J]. Light: Sci. Appl., 2021, 10(1): 206-1-16. doi: 10.1038/s41377-021-00640-4http://dx.doi.org/10.1038/s41377-021-00640-4
WEI C T, SU W M, LI J T, et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes [J]. Adv. Mater., 2022, 34(10): 2107798-1-12. doi: 10.1002/adma.202107798http://dx.doi.org/10.1002/adma.202107798
ZHOU Y H, FANG T, LIU G Y, et al. Perovskite anion exchange: a microdynamics model and a polar adsorption strategy for precise control of luminescence color [J]. Adv. Funct. Mater., 2021, 31(51): 2106871-1-11. doi: 10.1002/adfm.202106871http://dx.doi.org/10.1002/adfm.202106871
刘欣宇. 铯铅溴钙钛矿量子点的电子显微学研究 [D]. 北京: 中国科学院大学(中国科学院物理研究所), 2020. doi: 10.26464/epp2020028http://dx.doi.org/10.26464/epp2020028
LIU X Y. Investigation on Atomic Scale Visualization of Fine Structure in CsPbBr3 Quantum Dots by Transmission Electron Microscopy [D]. Beijing: University of Chinese Academy of Sciences(Institute of Physics), 2020. (in Chinese). doi: 10.26464/epp2020028http://dx.doi.org/10.26464/epp2020028
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics, 2018, 12(11): 681-687. doi: 10.1038/s41566-018-0260-yhttp://dx.doi.org/10.1038/s41566-018-0260-y
DONG Y T, WANG Y K, YUAN F L, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots [J]. Nat. Nanotechnol., 2020, 15(8): 668-674. doi: 10.1038/s41565-020-0714-5http://dx.doi.org/10.1038/s41565-020-0714-5
WANG Y K, SINGH K, LI J Y, et al. In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids [J]. Adv. Mater., 2022, 34(21): 2200854-1-6. doi: 10.1002/adma.202200854http://dx.doi.org/10.1002/adma.202200854
CUI J, MENG F P, ZHANG H, et al. CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide [J]. ACS Appl. Mater. Interfaces, 2014, 6(24): 22862-22870. doi: 10.1021/am507108uhttp://dx.doi.org/10.1021/am507108u
吴家龙, 窦永江, 张建凤, 等. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用 [J]. 物理学报, 2020, 69(1): 326-333. doi: 10.7498/aps.69.20191269http://dx.doi.org/10.7498/aps.69.20191269
WU J L, DOU Y J, ZHANG J F, et al. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer [J]. Acta Phys. Sinica, 2020, 69(1): 326-333. (in Chinese). doi: 10.7498/aps.69.20191269http://dx.doi.org/10.7498/aps.69.20191269
CHIH Y K, WANG J C, YANG R T, et al. NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes [J]. Adv. Mater., 2016, 28(39): 8687-8694. doi: 10.1002/adma.201602974http://dx.doi.org/10.1002/adma.201602974
MEYER J, KHALANDOVSKY R, GÖRRN P, et al. MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics [J]. Adv. Mater., 2011, 23(1): 70-73. doi: 10.1002/adma.201003065http://dx.doi.org/10.1002/adma.201003065
WANG Z B, YUAN F L, SUN W D, et al. Multifunctional p-type carbon quantum dots: a novel hole injection layer for high-performance perovskite light-emitting diodes with significantly enhanced stability [J]. Adv. Opt. Mater., 2019, 7(24): 1901299-1-9. doi: 10.1002/adom.201901299http://dx.doi.org/10.1002/adom.201901299
SHI Y L, ZHUO M P, FANG X C, et al. Efficient all-inorganic perovskite light-emitting diodes with cesium tungsten bronze as a hole-transporting layer [J]. J. Phys. Chem. Lett., 2020, 11(18): 7624-7629. doi: 10.1021/acs.jpclett.0c02304http://dx.doi.org/10.1021/acs.jpclett.0c02304
LIU Y L, ZHANG L Z, CHEN S, et al. Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes [J]. Small, 2021, 17(37): 2101477-1-8. doi: 10.1002/smll.202101477http://dx.doi.org/10.1002/smll.202101477
XIANG Z H, CAO D P, DAI L M. Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications [J]. Polym. Chem., 2015, 6(11): 1896-1911. doi: 10.1039/c4py01383bhttp://dx.doi.org/10.1039/c4py01383b
LI X L, XIANG Z H. Identifying the impact of the covalent-bonded carbon matrix to FeN4 sites for acidic oxygen reduction [J]. Nat. Commun., 2022, 13(1): 57-1-11. doi: 10.1038/s41467-021-27735-1http://dx.doi.org/10.1038/s41467-021-27735-1
CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks [J]. Science, 2005, 310(5751): 1166-1170. doi: 10.1126/science.1120411http://dx.doi.org/10.1126/science.1120411
杨辉, 王振交, 席曦, 等. 缓冲层ZnPc对有机电致发光器件特性的影响 [J]. 人工晶体学报, 2007, 36(6): 1363-1367. doi: 10.3969/j.issn.1000-985X.2007.06.035http://dx.doi.org/10.3969/j.issn.1000-985X.2007.06.035
YANG H, WANG Z J, XI X, et al. Effects of zinc-phthalocyanine as the buffer layer on the organic light-emitting devices [J]. J. Synth. Cryst., 2007, 36(6): 1363-1367. doi: 10.3969/j.issn.1000-985X.2007.06.035http://dx.doi.org/10.3969/j.issn.1000-985X.2007.06.035
CHEN Q, YANG S H, DONG L, et al. Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes [J]. Chin. Phys. B, 2020, 29(1): 017302-1-8. doi: 10.1088/1674-1056/ab5933http://dx.doi.org/10.1088/1674-1056/ab5933
FANG T, WANG T T, LI X S, et al. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport [J]. Sci. Bull., 2021, 66(1): 36-43. doi: 10.1016/j.scib.2020.08.025http://dx.doi.org/10.1016/j.scib.2020.08.025
SONG J Z, FANG T, LI J H, et al. Organic‑inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48% [J]. Adv. Mater., 2018, 30(50): 1805409-1-9. doi: 10.1002/adma.201805409http://dx.doi.org/10.1002/adma.201805409
何睿夫, 周非凡, 屈军乐, 等. 金属有机框架材料在有机钙钛矿太阳能电池中的应用进展 [J]. 发光学报, 2021, 42(11): 1722-1738. doi: 10.37188/CJL.20210208http://dx.doi.org/10.37188/CJL.20210208
HE R F, ZHOU F F, QU J L, et al. Research progress of metal-organic frameworks in organic perovskite solar cells [J]. Chin. J. Lumin., 2021, 42(11): 1722-1738. (in Chinese). doi: 10.37188/CJL.20210208http://dx.doi.org/10.37188/CJL.20210208
BACK H, KIM G, KIM J, et al. Achieving long-term stable perovskite solar cells via ion neutralization [J]. Energy Environ. Sci., 2016, 9(4): 1258-1263. doi: 10.1039/c6ee00612dhttp://dx.doi.org/10.1039/c6ee00612d
CHO H, KIM Y H, WOLF C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes [J]. Adv. Mater., 2018, 30(42): 1704587-1-24. doi: 10.1002/adma.201704587http://dx.doi.org/10.1002/adma.201704587
0
Views
200
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution