浏览全部资源
扫码关注微信
1.上海大学理学院 纳米科学与技术研究中心, 上海 200444
2.上海大学理学院 化学系, 上海 200444
3.上海大学 纳米化学与生物学研究所, 上海 200444
Published:05 July 2022,
Received:18 April 2022,
Revised:28 April 2022,
扫 描 看 全 文
涂港,凌丹萍,刘杰等.用作近红外光引导的化学‑光热协同治疗的上转换‑铋纳米诊疗剂[J].发光学报,2022,43(07):1040-1051.
TU Gang,LING Dan-ping,LIU Jie,et al.Upconversion-bismuth Nanosystem as Theranostic Agent for NIR Laser-driven Chemo-photothermal Therapy[J].Chinese Journal of Luminescence,2022,43(07):1040-1051.
涂港,凌丹萍,刘杰等.用作近红外光引导的化学‑光热协同治疗的上转换‑铋纳米诊疗剂[J].发光学报,2022,43(07):1040-1051. DOI: 10.37188/CJL.20220142.
TU Gang,LING Dan-ping,LIU Jie,et al.Upconversion-bismuth Nanosystem as Theranostic Agent for NIR Laser-driven Chemo-photothermal Therapy[J].Chinese Journal of Luminescence,2022,43(07):1040-1051. DOI: 10.37188/CJL.20220142.
设计并合成了一种用于近红外光驱动的化学⁃光热治疗的上转换⁃铋纳米体系诊疗剂(UBDAs),其具有出色的光热转换能力(28.5%)和良好的生物相容性。同时,在980 nm近红外光的激发下,UBDAs能够发射紫外/可见光,用于促进光敏剂偶氮苯在介孔中的连续旋转⁃翻转运动,从而实现药物的可控释放,且利用近红外光激发能够有效避免传统紫外光对生物组织的副作用。光热实验表明,UBDAs杂化纳米体系在980 nm激光照射下具有良好的光热效应。此外,含有Tm
3+
和Bi元素的UBDAs有望用于上转换发光成像和X射线计算机断层成像,进而实现双模成像介导且单一近红外光激发的癌症化学疗法和光热疗法。该研究结果为诊断和协同增强抗肿瘤治疗的综合研究提供了新的思路。
A hybrid nanosystem of upconversion-bismuth integration(denoted as UBDAs) is designed and synthesized for near infrared(NIR) light-driven chemo-photothermal therapy. The obtained UBDAs present excellent photothermal conversion capacity (~28.5%) and good biocompatibility. Meanwhile, under excitation of NIR, UBDAs can emit ultraviolet/visible light, which promotes the continuous rotation-flip movement of the photosensitizer azobenzene in the mesoporous, thereby achieving the controlled drug release and avoiding the side effects of traditional ultraviolet light excitation on biological tissues. Photothermal experiments show that UBDAs hybrid nanosystems have a good photothermal effect under 980 nm laser irradiation. In addition, based on Tm
3+
and Bi element the UBDAs are expected to be used in upconversion luminescence and X-ray computed tomography(CT) imaging to achieve dual-mode imaging-mediated and single NIR-driven chemotherapy and photothermal therapy. Therefore, this work provides a new idea for the integration of diagnosis and synergistically enhanced antitumor therapy.
上转换发光成像光热治疗药物释放杂化纳米体系
upconversion luminescenceimagingphotothermal therapydrug releasehybrid nanosystems
HOU B B,YANG W T,DONG C H,et al. Controlled co-release of doxorubicin and reactive oxygen species for synergistic therapy by NIR remote-triggered nanoimpellers [J]. Mater. Sci. Eng. C‐Mater. Biol. Appl., 2017,74:94-102. doi: 10.1016/j.msec.2017.02.016http://dx.doi.org/10.1016/j.msec.2017.02.016
THAKUR M K,GUPTA A,GHOSH S,et al. Graphene-conjugated upconversion nanoparticles as fluorescence-tuned photothermal nanoheaters for Desalination [J]. ACS Appl. Nano Mater., 2019,2(4):2250-2259. doi: 10.1021/acsanm.9b00186http://dx.doi.org/10.1021/acsanm.9b00186
KUMAR B,MURALI A,MATTAN I,et al. Near-infrared-triggered photodynamic,photothermal,and on demand chemotherapy by multifunctional upconversionnanocomposite [J]. J. Phys. Chem. B, 2019,123(17):3738-3755. doi: 10.1021/acs.jpcb.9b01870http://dx.doi.org/10.1021/acs.jpcb.9b01870
HE Y C,NIU K,LUO L,et al. Reduction and protection:one-step synthesis of polydopamine-coated silver nanowires with superior biosafety for cancer treatment [J]. ACS Sustainable Chem. Eng., 2019,7(24):20102-20106. doi: 10.1021/acssuschemeng.9b05965http://dx.doi.org/10.1021/acssuschemeng.9b05965
LIU Y,DING L,WANG D,et al. Hollow Pd nanospheres conjugated with Ce6 to simultaneously realize photodynamic and photothermal therapy [J]. ACS Appl. Bio. Mater., 2018,1(4):1102-1108. doi: 10.1021/acsabm.8b00318http://dx.doi.org/10.1021/acsabm.8b00318
ZHANG H,WANG Y M,ZHONG H,et al. Near-infrared light-activated Pt@Au nanorings-based probe for fluorescence imaging and targeted photothermal therapy of cancer cells [J]. ACS Appl. Bio. Mater., 2019,2(11):5012-5020. doi: 10.1021/acsabm.9b00712http://dx.doi.org/10.1021/acsabm.9b00712
ZHOU H,CHE L,GUO Z M,et al. Bacteria-mediated ultrathin Bi2Se3 nanosheets fabrication and their application in photothermal cancer therapy [J]. ACS Sustainable Chem. Eng., 2018,6(4):4863-4870. doi: 10.1021/acssuschemeng.7b04321http://dx.doi.org/10.1021/acssuschemeng.7b04321
ZHANG HH,CHEN G H,YU B,et al. Fabrication of PEGy lated Bi2S3 nanosheets as a multifunctional platform for multimodal diagnosis and combination therapy for cancer [J]. ACS Appl. Bio. Mater., 2019,2(9):3870-3876. doi: 10.1021/acsabm.9b00471http://dx.doi.org/10.1021/acsabm.9b00471
HUANG Y,HUANG J Q,JIANG M Y,et al. NIR-triggered theranostic Bi2S3 light transducer for on-demand NO release and synergistic gas/photothermal combination therapy of tumors [J]. ACS Appl. Bio. Mater., 2019,2(11):4769-4776. doi: 10.1021/acsabm.9b00522http://dx.doi.org/10.1021/acsabm.9b00522
ZHANG M,WANG W T,CUI Y J,et al. Magnetofluorescent carbon quantum dot decorated multiwalled carbon nanotubes for dual-modal targeted imaging in chemo-photothermal synergistic therapy [J]. ACS Biomater. Sci. Eng., 2018,4(1):151-162. doi: 10.1021/acsbiomaterials.7b00531http://dx.doi.org/10.1021/acsbiomaterials.7b00531
XUAN Y,YANG XQ,SONG ZY,et al. High‐security multifunctional nano‐bismuth‐sphere‐cluster prepared from oral gastric drug for CT/PA dual‐mode imaging and chemo‐photothermal combined therapy in vivo [J]. Adv. Funct. Mater., 2019,29(18):1900017-1-12. doi: 10.1002/adfm.201900017http://dx.doi.org/10.1002/adfm.201900017
YU X J,LI A,ZHAO C Z,et al. Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy [J]. ACS Nano, 2017,11(4):3990-4001. doi: 10.1021/acsnano.7b00476http://dx.doi.org/10.1021/acsnano.7b00476
LEI PP,AN R,ZHANG P,et al. Ultrafast synthesis of ultrasmall poly(vinylpyrrolidone)-protected bismuth nanodots as a multifunctional theranostic agent for in vivo dual-modal CT/photothermal-imaging-guided photothermal therapy [J]. Adv. Funct. Mater., 2017,27(35):1702018-1-10. doi: 10.1002/adfm.201702018http://dx.doi.org/10.1002/adfm.201702018
SONG Y,LIU G X,DONG X T,et al. Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence,magnetism,and photothermal property [J]. J. Phys. Chem. C, 2015,119(32):18527-18536. doi: 10.1021/acs.jpcc.5b06099http://dx.doi.org/10.1021/acs.jpcc.5b06099
HUANG Y,XUE Z L,ZENG S J. Hollow mesoporous Bi@PEG-FA nanoshell as a novel dual-stimuli responsive nanocarrier for synergistic chemo-photothermal cancer therapy [J]. ACS Appl. Mater. Interfaces, 2020,12(28):31172-31181. doi: 10.1021/acsami.0c07372http://dx.doi.org/10.1021/acsami.0c07372
SUN L N,WEI R Y,FENG J,et al. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects [J]. Coord. Chem. Rev., 2018,364:10-32. doi: 10.1016/j.ccr.2018.03.007http://dx.doi.org/10.1016/j.ccr.2018.03.007
WANG K P,WU Q,WANG X C,et al. Near-infrared control and real-time detection of osteogenic differentiation in mesenchymal stem cells by multifunctional upconversion nanoparticles [J]. Nanoscale, 2020,12(25):10106-10116. doi: 10.1039/d0nr00872ahttp://dx.doi.org/10.1039/d0nr00872a
董娅慧,于佳酩,王士鹏,等. β-NaGdF4∶Yb3+,Er3+/纤维素纳米晶胆甾型复合膜制备及光学性能 [J]. 发光学报, 2021,42(12):1882-1890.
DONG Y H,YU J M,WANG S P,et al. Preparation and optical properties of β-NaGdF4∶Yb3+,Er3+/cellulose nanocrystalline cholesteric composite films [J]. Chin. J. Lumin., 2021,42(12):1882-1890.(in Chinese)
赵皎印,索浩,李磊朋,等. 荧光热增强型稀土掺杂上转换发光材料研究进展 [J]. 发光学报, 2021,42(11):1673-1685. doi: 10.37188/CJL.20210265http://dx.doi.org/10.37188/CJL.20210265
ZHAO J Y,SUO H,LI L P,et al. Recent advances in rare-earth doped upconverisonmaterials with thermally-enhanced emissions [J]. Chin. J. Lumin., 2021,42(11):1673-1685.(in Chinese). doi: 10.37188/CJL.20210265http://dx.doi.org/10.37188/CJL.20210265
蒙铭周,张瑞,法信蒙,等. Ce3+掺杂对NaYF4∶Yb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用 [J].发光学报, 2021,42(11):1763-1773.
MENG M Z,ZHANG R,FA X M,et al. Effect of Ce3+ doping on upconversion luminescence of NaYF4∶Yb3+,Tm3+ nanoparticles and application of fluorescence temperature characteristics [J]. Chin. J. Lumin., 2021,42(11):1763-1773.(in Chinese)
SUN X K,SUN J,DONG B,et al. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites [J]. Biomaterials, 2019,201:42-52. doi: 10.1016/j.biomaterials.2019.02.014http://dx.doi.org/10.1016/j.biomaterials.2019.02.014
ZHOU B S,SUN X L,DONG B,et al. Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections [J]. Theranostics, 2022,12(6):2580-2597. doi: 10.7150/thno.70277http://dx.doi.org/10.7150/thno.70277
CHEN B T,DONG B,WANG J,et al. Amphiphilic silane modified NaYF4∶Yb,Er loaded with Eu(TTA)3(TPPO)2 nanoparticles and their multi-functions:dual mode temperature sensing and cell imaging [J]. Nanoscale, 2013,5(18):8541-8549. doi: 10.1039/c3nr02670ahttp://dx.doi.org/10.1039/c3nr02670a
QI M L,LI X,SUN X L,et al. Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium [J]. Dent. Mater., 2019,35(11):1665-1681. doi: 10.1016/j.dental.2019.08.115http://dx.doi.org/10.1016/j.dental.2019.08.115
LIU H Y,LI J B,HU P F,et al. Facile synthesis of Er3+/Tm3+ co-doped magnetic/luminescent nanosystems for possible bioimaging and therapy applications [J]. J. Rare Earths, 2022,40(1):11-19. doi: 10.1016/j.jre.2020.11.006http://dx.doi.org/10.1016/j.jre.2020.11.006
GE X Q,SUN L N,MA B B,et al. Simultaneous realization of Hg2+ sensing,magnetic resonance imaging and upconversion luminescence in vitro and in vivo bioimaging based on hollow mesoporous silica coated UCNPs and ruthenium complex [J]. Nanoscale, 2015,7(33):13877-13887. doi: 10.1039/c5nr04006jhttp://dx.doi.org/10.1039/c5nr04006j
WEI Z W,SUN L N,LIU J L,et al. Cysteine modified rare-earth up-converting nanoparticles for in vitro and in vivo bioimaging [J]. Biomaterials, 2014,35(1):387-392. doi: 10.1016/j.biomaterials.2013.09.110http://dx.doi.org/10.1016/j.biomaterials.2013.09.110
LIANG X,YE X Y,WANG C,et al. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation [J]. J. Control Release, 2019,296:150-161. doi: 10.1016/j.jconrel.2019.01.027http://dx.doi.org/10.1016/j.jconrel.2019.01.027
XUE Y M,NIU W,WANG M,et al. Engineering a biodegradable multifunctional antibacterial bioactive nanosystem for enhancing tumor photothermo-chemotherapy and bone regeneration [J]. ACS Nano, 2020,14(1):442-453. doi: 10.1021/acsnano.9b06145http://dx.doi.org/10.1021/acsnano.9b06145
LV R C,JIANG X,YANG F,et al. Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy [J]. Biomater. Sci., 2019,7(11):4558-4567. doi: 10.1039/c9bm00853ehttp://dx.doi.org/10.1039/c9bm00853e
LIU W L,ZOU M Z,LIU T,et al. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells [J]. Nat. Commun., 2019,10:3199-1-12. doi: 10.1038/s41467-019-11157-1http://dx.doi.org/10.1038/s41467-019-11157-1
GOEBELER ME,BARGOU R C. T cell-engaging therapies-bitesand beyond [J]. Nat. Rev. Clin. Oncol., 2020,17(7):418-434. doi: 10.1038/s41571-020-0347-5http://dx.doi.org/10.1038/s41571-020-0347-5
HAN X,SHEN S F,FAN Q,et al. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy [J]. Sci. Adv., 2019,5(10):eaaw6870-1-9. doi: 10.1126/sciadv.aaw6870http://dx.doi.org/10.1126/sciadv.aaw6870
PAN J,HU P,GUO Y D,et al. Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments [J]. ACS Nano, 2020,14(1):1033-1044. doi: 10.1021/acsnano.9b08550http://dx.doi.org/10.1021/acsnano.9b08550
FENG Y,CHEN H D,SHAO B Q,et al. Renal-clearable peptide-functionalized Ba2GdF7 nanoparticles for positive tumor-targeting dual-mode bioimaging [J]. ACS Appl. Mater. Interfaces, 2018,10(30):25511-25518. doi: 10.1021/acsami.8b07129http://dx.doi.org/10.1021/acsami.8b07129
SUI B Y,LIU X,SUN J. Dual-dunctional dendritic mesoporous bioactive glass nanospheres for calcium influx-mediated specific tumor suppression and controlled drug delivery in vivo [J]. ACS Appl. Mater. Interfaces, 2018,10(28):23548-23559. doi: 10.1021/acsami.8b05616http://dx.doi.org/10.1021/acsami.8b05616
GONG Q Y,XING J,HUANG Y J,et al. Perylene diimideoligomer nanoparticles with ultrahigh photothermal conversion efficiency for cancer theranostics [J]. ACS Appl. Bio. Mater., 2020,3(3):1607-1615. doi: 10.1021/acsabm.9b01187http://dx.doi.org/10.1021/acsabm.9b01187
ZHOU K,QIU X Y,XU L T,et al. Poly(selenoviologen) assembled upconversion nanoparticles for low power single NIR light triggered synergistic photodynamic and photothermal antibacterial therapy[J]. ACS Appl. Mater. Interfaces, 2020,12(23):26432-26443. doi: 10.1021/acsami.0c04506http://dx.doi.org/10.1021/acsami.0c04506
CHEN Q,HUANG G J,WU W T,et al. A hybrid eukaryotic-prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination [J]. Adv. Mater., 2020,32(16):1908185-1-10. doi: 10.1002/adma.201908185http://dx.doi.org/10.1002/adma.201908185
ZHAO S,TIAN R R,SHAO B Q,et al. Designing of UCNPs@Bi@SiO2 hybrid theranostic nanoplatforms for simultaneous multimodal imaging and photothermal therapy [J]. ACS Appl. Mater. Interfaces, 2019,11(1):394-402. doi: 10.1021/acsami.8b19304http://dx.doi.org/10.1021/acsami.8b19304
XUE Y M,DU Y Z,YAN J,et al. Monodisperse photoluminescent and highly biocompatible bioactive glass nanoparticles for controlled drug delivery and cell imaging [J]. J. Mater. Chem. B, 2015,3(18):3831-3839. doi: 10.1039/c5tb00204dhttp://dx.doi.org/10.1039/c5tb00204d
CAI X J,JIA X Q,GAO W,et al. A versatile nanotheranosticagent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy [J]. Adv. Funct. Mater., 2015,25(17):2520-2529. doi: 10.1002/adfm.201403991http://dx.doi.org/10.1002/adfm.201403991
ZHANG Y F,WAN Y L,CHEN Y T,et al. Ultrasound-enhanced chemo-photodynamic combination therapy by using albumin “Nanoglue”-based nanotheranostics [J]. ACS Nano, 2020,14(5):5560-5569. doi: 10.1021/acsnano.9b09827http://dx.doi.org/10.1021/acsnano.9b09827
0
Views
245
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution