浏览全部资源
扫码关注微信
1.昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室, 云南 昆明 650106
2.昆明理工大学 材料科学与工程学院, 云南 昆明 650093
Published:05 October 2022,
Received:15 April 2022,
Revised:28 April 2022,
移动端阅览
常桥稳,陈祝安,王姿奥等.基于苯基喹啉配体修饰的铱磷光配合物及其高效纯红光有机电致发光器件[J].发光学报,2022,43(10):1583-159110.37188/CJL.20220134.
CHANG Qiao-wen,CHEN Zhu-an,WANG Zi-ao,et al.Iridium Phosphorescent Complexes Based on Modified Phenylquinoline Ligand and Their High-efficiency Pure Red Organic Electroluminescent Device[J].Chinese Journal of Luminescence,2022,43(10):1583-159110.37188/CJL.20220134.
常桥稳,陈祝安,王姿奥等.基于苯基喹啉配体修饰的铱磷光配合物及其高效纯红光有机电致发光器件[J].发光学报,2022,43(10):1583-159110.37188/CJL.20220134. DOI:
CHANG Qiao-wen,CHEN Zhu-an,WANG Zi-ao,et al.Iridium Phosphorescent Complexes Based on Modified Phenylquinoline Ligand and Their High-efficiency Pure Red Organic Electroluminescent Device[J].Chinese Journal of Luminescence,2022,43(10):1583-159110.37188/CJL.20220134. DOI:
通过对2,4‑2R‑苯基‑4‑甲基喹啉主配体进行修饰,在苯基空间位阻较小的2位和4位引入供或吸电子能力的取代基(甲基,Me或甲氧基,MeO),分别合成了2种铱磷光配合物(2,4⁃2Me⁃mpq)
2
Ir(acac)和(2,4⁃2MeO⁃mpq)
2
Ir(acac),采用元素分析、核磁共振谱和单晶X射线衍射对其组成和化学结构进行了表征与确认。它们的光致发光光谱发射波长分别为610 nm和580 nm,光致发光量子产率分别为75%和80%,HOMO/LUMO能级差分别为2.04 eV和2.19 eV。以纯红光发射的磷光配合物(2,4⁃2Me⁃mpq)
2
Ir(acac)为客体材料,制备了结构为ITO /TAPC(30 nm)/CBP∶(2,4⁃2Me⁃mpq)
2
Ir(acac)(30 nm)∶
x
%/TPBi(30 nm)/Liq(2 nm)/Al的OLED器件,并优化了掺杂浓度,在10%的优化浓度下实现了高效红光OLED发光。器件的发射波长为607 nm,CIE坐标为(0.63,0.37),最大亮度为25 980 cd/m
2
,电流效率为23.11 cd/A,外量子效率(EQE)高达20.28%。
Two iridium phosphorescent complexes were synthesized by using the modified 2,4-2R-phenyl-4-methylquinoline as the main ligands. Methyl or methoxy was introduced in the positions 2 and 4 with small steric hindrance of phenyl. Their compositions and chemical structures of the complexes were characterized by elemental analysis, nuclear magnetic resonance spectroscopy and single crystal X-ray diffraction. The (2,4-2Me-mpq)
2
Ir(acac) and (2,4-2MeO-mpq)
2
Ir(acac) with the photoluminescence quantum yields of 75% and 80% exhibit maximum emission peaks at 610 nm and 580 nm, respectively. The HOMO-LUMO energy levels difference of the two complexes are 2.04 eV and 2.19 eV, respectively. Using (2,4-2Me-mpq)
2
Ir(acac) as the guest material, the high-efficiency pure red OLED with structure ITO/TAPC(30 nm)/CBP∶(2,4-2Me-mpq)
2
Ir(acac)(30 nm)∶
x
%/TPBi(30 nm)/Liq(2 nm)/Al was prepared with different doping concentrations. At the optimal doping concentration of 10%, the device based on (2,4-2Me-mpq)
2
Ir(acac) exhibited a red emission at 607 nm with CIE(0.63, 0.37), a luminance of 25 980 cd/m
2
, a maximum current efficiency of 23.11 cd/A and a maximum external quantum efficiency(EQE) of 20.28%, respectively.
铱配合物磷光材料高效红光OLED发光性能
iridium complexesphosphorescent materialshigh efficiencyred OLEDluminescent property
TSUJIMURA T. OLED Displays Fundamentals and Applications [M]. Hoboken: John Wiley & Sons, Inc., 2012. doi: 10.1002/9781118173053http://dx.doi.org/10.1002/9781118173053
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
REINEKE S, LINDNER F, SCHWARTZ G, et al. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009, 459(7244): 234-238. doi: 10.1038/nature08003http://dx.doi.org/10.1038/nature08003
常桥稳, 刘志伟, 王登科, 等. 磷光铱配合物的纯度对其电致发光性能的影响 [J]. 发光学报, 2015, 36(12): 1396-1401. doi: 10.3788/fgxb20153612.1396http://dx.doi.org/10.3788/fgxb20153612.1396
CHANG Q W, LIU Z W, WANG D K, et al. Effect of purity on electroluminescent performance of phosphorescent iridium complexes [J]. Chin. J. Lumin., 2015, 36(12): 1396-1401. (in Chinese). doi: 10.3788/fgxb20153612.1396http://dx.doi.org/10.3788/fgxb20153612.1396
刘迪萱, 钟锦耀, 唐彪, 等. 柔性与印刷OLED研究进展 [J]. 液晶与显示, 2021, 36(2): 217-228. doi: 10.37188/CJLCD.2020-0232http://dx.doi.org/10.37188/CJLCD.2020-0232
LIU D X, ZHONG J Y, TANG B, et al. Research progress of flexible and printed OLED [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(2): 217-228. (in Chinese). doi: 10.37188/CJLCD.2020-0232http://dx.doi.org/10.37188/CJLCD.2020-0232
刘欣, 叶芸, 唐谦, 等. 有机发光二极管显示屏的喷墨打印研究与展望 [J]. 中国光学, 2020, 13(2): 217-228. doi: 10.3788/CO.20201302.0217http://dx.doi.org/10.3788/CO.20201302.0217
LIU X, YE Y, TANG Q, et al. Progress of OLEDs prepared by inkjet printing [J]. Chin. Opt., 2020, 13(2): 217-228. (in Chinese). doi: 10.3788/CO.20201302.0217http://dx.doi.org/10.3788/CO.20201302.0217
罗杰超, 郭俊达, 米凤文, 等. 基于变形目镜和OLED的全景周视成像与显示技术 [J]. 中国光学, 2020, 13(4): 752-759. doi: 10.37188/CO.2019-0214http://dx.doi.org/10.37188/CO.2019-0214
LUO J C, GUO J D, MI F W, et al. Panoramic peripheral vision imaging and display technology based on a deformation eyepiece and OLED [J]. Chin. Opt., 2020, 13(4): 752-759. (in Chinese). doi: 10.37188/CO.2019-0214http://dx.doi.org/10.37188/CO.2019-0214
季渊, 王成其, 陈文栋, 等. OLED微显示器的原子扫描策略 [J]. 光学 精密工程, 2018, 26(4): 998-1005. doi: 10.3788/ope.20182604.0998http://dx.doi.org/10.3788/ope.20182604.0998
JI Y, WANG C Q, CHEN W D, et al. An atom scan strategy for OLED micro display [J]. Opt. Precision Eng., 2018, 26(4): 998-1005. (in Chinese). doi: 10.3788/ope.20182604.0998http://dx.doi.org/10.3788/ope.20182604.0998
刘志伟, 卞祖强, 黄春辉. 金属配合物电致发光 [M]. 北京: 科学出版社, 2019.
LIU Z W, BIAN Z Q, HUANG C H. The Electroluminescence of Metal Complexes [M]. Beijing: Science Press, 2019. (in Chinese)
LI X Y, ZHANG J Y, ZHAO Z F, et al. Deep blue phosphorescent organic light‐emitting diodes with CIEy value of 0.11 and external quantum efficiency up to 22.5% [J]. Adv. Mater., 2018, 30(12): 1705005-1-8. doi: 10.1002/adma.201705005http://dx.doi.org/10.1002/adma.201705005
郭庆美, 杨至雨, 黄国利, 等. 以2-(苯磺酰基)苯乙酮衍生物为辅助配体的铱配合物的合成及性质 [J]. 发光学报, 2018, 39(5): 633-642. doi: 10.3788/fgxb20183905.0633http://dx.doi.org/10.3788/fgxb20183905.0633
GUO Q M, YANG Z Y, HUANG G L, et al. Synthesis and properties of Ir(Ⅲ) complexes based on 2-(phenylsulfonyl) acetophenone derivatives as auxiliary ligands [J]. Chin. J. Lumin., 2018, 39(5): 633-642. (in Chinese). doi: 10.3788/fgxb20183905.0633http://dx.doi.org/10.3788/fgxb20183905.0633
高朝, 谢黎明, 苏文明, 等. 一种新型交联电子传输材料在OLED中的应用 [J]. 发光学报, 2020, 41(9): 1093-1101. doi: 10.37188/fgxb20204109.1093http://dx.doi.org/10.37188/fgxb20204109.1093
GAO Z, XIE L M, SU W M, et al. Application of a novel cross-linkable electron transport material in OLED [J]. Chin. J. Lumin., 2020, 41(9): 1093-1101. (in English). doi: 10.37188/fgxb20204109.1093http://dx.doi.org/10.37188/fgxb20204109.1093
LI T Y, WU J, WU Z G, et al. Rational design of phosphorescent iridium (Ⅲ) complexes for emission color tunability and their applications in OLEDs [J]. Coord. Chem. Rev., 2018, 374(1): 55-92. doi: 10.1016/j.ccr.2018.06.014http://dx.doi.org/10.1016/j.ccr.2018.06.014
TAVASLI M, MOORE T N, ZHENG Y H, et al. Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(Ⅲ) complexes of carbazole-based ligands: synthetic, photophysical, computational and high efficiency OLED studies [J]. J. Mater. Chem., 2012, 22(13): 6419-6428. doi: 10.1039/c2jm15049bhttp://dx.doi.org/10.1039/c2jm15049b
LEE S Y, LEE S E, OH Y N, et al. Synthesis and electroluminescent property of highly efficient phosphorescent red dopants based on modulated main ligands [J]. Mole. Cryst. Liq. Cryst., 2017, 653(1): 118-124. doi: 10.1080/15421406.2017.1350041http://dx.doi.org/10.1080/15421406.2017.1350041
CHANG W C, HU A T, DUAN J P, et al. Color tunable phosphorescent light-emitting diodes based on iridium complexes with substituted 2-phenylbenzothiozoles as the cyclometalated ligands [J]. J. Organomet. Chem., 2004, 689(26): 4882-4888. doi: 10.1016/j.jorganchem.2004.07.003http://dx.doi.org/10.1016/j.jorganchem.2004.07.003
CHAU N Y, HO P Y, HO C L, et al. Color-tunable thiazole-based iridium (Ⅲ) complexes: synthesis, characterization and their OLED applications [J]. J. Organomet. Chem., 2017, 829: 92-100. doi: 10.1016/j.jorganchem.2016.11.018http://dx.doi.org/10.1016/j.jorganchem.2016.11.018
WANG L, WANG N, ZHANG Y, et al. Color tuning from red to green of bis-cyclometalated iridium(Ⅲ) emitters based on benzoimidazole ligands in OLEDs: a DFT and TDDFT investigation [J]. Synth. Met., 2014, 194: 160-169. doi: 10.1016/j.synthmet.2014.04.027http://dx.doi.org/10.1016/j.synthmet.2014.04.027
SEO J H, KIM I J, KIM Y S, et al. Color tuning of organic light-emitting diodes by adjusting the ligands of heteroleptic iridium(Ⅲ) complexes [J]. J. Cryst. Growth, 2011, 326(1): 113-115. doi: 10.1016/j.jcrysgro.2011.01.064http://dx.doi.org/10.1016/j.jcrysgro.2011.01.064
KAJJAM A B, VAIDYANATHAN S. Tuning the photophysical properties of heteroleptic Ir(Ⅲ) complexes through ancillary ligand substitution: experimental and theoretical investigation [J]. J. Photochem. Photobiol. A: Chem., 2018, 350: 130-141. doi: 10.1016/j.jphotochem.2017.09.054http://dx.doi.org/10.1016/j.jphotochem.2017.09.054
KWON T H, CHO H S, KIM M K, et al. Color tuning of cyclometalated iridium complexes through modification of phenylpyrazole derivatives and ancillary ligand based on ab initio calculations [J]. Organometallics, 2005, 24(7): 1578-1585.
FANG K H, WU L L, HUANG Y T, et al. Color tuning of iridium complexes—Part Ⅰ: substituted phenylisoquinoline-based iridium complexes as the triplet emitter [J]. Inorg. Chim. Acta, 2006, 359(2): 441-450. doi: 10.1016/j.ica.2005.10.003http://dx.doi.org/10.1016/j.ica.2005.10.003
陶鹏. 高效磷光铱(Ⅲ)配合物的设计、合成、激发态调控及光电应用研究 [D]. 太原: 太原理工大学, 2017. doi: 10.35530/it.068.04.1290http://dx.doi.org/10.35530/it.068.04.1290
TAO P. Design, Synthesis, and Excited States Tuning of Highly Efficient Iridium (Ⅲ) Complexes for Applications in Optoelectronics [D]. Taiyuan: Taiyuan University of Technology, 2017. (in Chinese). doi: 10.35530/it.068.04.1290http://dx.doi.org/10.35530/it.068.04.1290
TAO P, LI W L, ZHANG J, et al. Facile synthesis of highly efficient lepidine-based phosphorescent iridium(Ⅲ) complexes for yellow and white organic light-emitting diodes [J]. Adv. Funct. Mater., 2016, 26(6): 881-894. doi: 10.1002/adfm.201503826http://dx.doi.org/10.1002/adfm.201503826
陶鹏, 郑小康, 尹梦娜, 等. 新型宽谱带黄色磷光铱(Ⅲ)配合物的合成、光物理性质及其高效电致发光 [J]. 液晶与显示, 2021, 36(1): 1-7. doi: 10.37188/CJLCD.2020-0266http://dx.doi.org/10.37188/CJLCD.2020-0266
TAO P, ZHENG X K, YIN M N, et al. Novel yellow phosphorescent iridium(Ⅲ) complex with broad emission: synthesis, photophysical properties and efficient electroluminescence [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1): 1-7. (in Chinese). doi: 10.37188/CJLCD.2020-0266http://dx.doi.org/10.37188/CJLCD.2020-0266
GAUDIN O, MAUNOURY J, ORSELLI E. Multilayer structure with SBF matrix materials in adjacent layers: WO 2015/071473 [P]. 2015-05-21.
KIM D H, CHO N S, OH H Y, et al. Highly efficient red phosphorescent dopants in organic light-emitting devices [J]. Adv. Mater., 2011, 23(24): 2721-2726. doi: 10.1002/adma.201100405http://dx.doi.org/10.1002/adma.201100405
KWONG R, MA B, XIA C, et al. Phosphorescent materials: WO 2008/109824 A2 [P]. 2008-12-09.
ZHUANG J Y, LI W F, SU W M, et al. Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(Ⅲ) complex as a sky-blue dopant [J]. Org. Electron., 2013, 14(10): 2596-2601. doi: 10.1016/j.orgel.2013.06.029http://dx.doi.org/10.1016/j.orgel.2013.06.029
HAMMETT L P. The effect of structure upon the reactions of organic compounds. Benzene derivatives [J]. J. Am. Chem. Soc., 1937, 59(1): 96-103. doi: 10.1021/ja01280a022http://dx.doi.org/10.1021/ja01280a022
田侯汝. 基于苯基喹唑啉配体的红色磷光铱配合物的合成及电致发光性质研究 [D]. 大连: 大连理工大学, 2021.
TIAN H R. Synthesis and Electroluminescence Properties of Red Phosphorescent Iridium Complex Based on Phenyquinazoline Ligands [D]. Dalian: Dalian University of Technology, 2021. (in Chinese)
YAN Z M, WANG Y P, DING J Q, et al. Methoxyl modification in furo[3,2-c]pyridine-based iridium complexes towards highly efficient green- and orange-emitting electrophosphorescent devices [J]. J. Mater. Chem. C, 2017, 5(46): 12221-12227. doi: 10.1039/c7tc04269hhttp://dx.doi.org/10.1039/c7tc04269h
TIAN H R, LIU D, LI J Y, et al. Pure red phosphorescent iridium(Ⅲ) complexes containing phenylquinazoline ligands for highly efficient organic light-emitting diodes [J]. New J. Chem., 2021, 45(25): 11253-11260. doi: 10.1039/d1nj01795khttp://dx.doi.org/10.1039/d1nj01795k
D’ANDRADE B W, DATTA S, FORREST S R, et al. Relationship between the ionization and oxidation potentials of molecular organic semiconductors [J]. Org. Electron., 2005, 6(1): 11-20. doi: 10.1016/j.orgel.2005.01.002http://dx.doi.org/10.1016/j.orgel.2005.01.002
MURAWSKI C, LEO K, GATHER M C. Efficiency roll-off in organic light-emitting diodes [J]. Adv. Mater., 2013, 25(47): 6801-6827. doi: 10.1002/adma.201301603http://dx.doi.org/10.1002/adma.201301603
HOLMES R J, D’ANDRADE B W, FORREST S R, et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping [J]. Appl. Phys. Lett., 2003, 83(18): 3818-3820. doi: 10.1063/1.1624639http://dx.doi.org/10.1063/1.1624639
POPP L, SCHOLZ R, KLEINE P, et al. High performance two-color hybrid TADF-phosphorescent WOLEDs with bimodal Forster and Dexter-type exciton distribution [J]. Org. Electron., 2019, 75: 105365-1-10. doi: 10.1016/j.orgel.2019.07.023http://dx.doi.org/10.1016/j.orgel.2019.07.023
0
Views
344
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution