浏览全部资源
扫码关注微信
河北大学 物理科学与技术学院, 河北 保定 071002
Published:05 August 2022,
Received:11 April 2022,
Revised:26 April 2022,
扫 描 看 全 文
陈一凡,李江涛,余启辉等.环境友好型Cs3MnBr5材料的制备及发光性能[J].发光学报,2022,43(08):1198-1206.
CHEN Yi-fan,LI Jiang-tao,YU Qi-hui,et al.Synthesis and Luminescent Properties of Environmentally Friendly Cs3MnBr5 Materials[J].Chinese Journal of Luminescence,2022,43(08):1198-1206.
陈一凡,李江涛,余启辉等.环境友好型Cs3MnBr5材料的制备及发光性能[J].发光学报,2022,43(08):1198-1206. DOI: 10.37188/CJL.20220132.
CHEN Yi-fan,LI Jiang-tao,YU Qi-hui,et al.Synthesis and Luminescent Properties of Environmentally Friendly Cs3MnBr5 Materials[J].Chinese Journal of Luminescence,2022,43(08):1198-1206. DOI: 10.37188/CJL.20220132.
无机铅卤钙钛矿CsPb
X
3
(
X
=Cl,Br,I)由于具有荧光量子产率高、带隙可调、吸光系数高等优点,在发光器件和光伏器件领域有着广阔的应用前景。但由于重金属铅具有毒性,会对环境及生物造成危害,所以开发无铅钙钛矿及其衍生材料成为研究热点。而在众多材料中,钙钛矿衍生材料——金属卤化物具有种类多、结构类型多、发光性能优等优点。因此本文利用油酸还原法制备了钙钛矿衍生材料Cs
3
MnBr
5
,该方法具有环境友好、能耗低、产物纯度高、可大批量生产等优点。Cs
3
MnBr
5
材料在近紫外激发下显示了明亮的绿色发光,峰值位于528 nm,半高宽43 nm,色坐标为(0.25,0.69),色纯度高达92%,荧光量子产率为64.69%,在LED照明领域和显示领域具有商业应用潜力。
Inorganic lead halide perovskite has broad application prospects in light-emitting devices and photovoltaic devices due to its advantages, such as high fluorescence quantum yield, adjustable band gap, and high absorption coefficient. Due to the toxic lead ions which is harmful to the environment and organisms, the development of lead-free perovskite materials and their derived materials has become a research hotspot. Among many materials, compared with perovskite materials, perovskite-derived materials-metal halides have the advantages of many types, many structural types, and excellent luminescent properties. In this paper, the perovskite-derived material Cs
3
MnBr
5
was prepared by the oleic acid reduction method, which has the advantages of environmental friendliness, low energy consumption, high product purity, and mass production. The Cs
3
MnBr
5
material shows bright green luminescence under near-ultraviolet excitation, the emission peak locates at 528 nm, the full width at half maximum is 43 nm, the color coordinates are (0.25, 0.69), PLQY is 64.96% and the color purity is as high as 92%. These indicate that Cs
3
MnBr
5
material has potential applications in commercial LED lighting and displays.
发光二极管无机钙钛矿Cs3MnBr5荧光粉
light⁃emitting diode(LED)inorganic perovskitesCs3MnBr5phosphor
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
方骏, 陈泽廷, 沈江荣, 等. 不同溶剂中CsPbBr3钙钛矿纳米晶的制备及性能 [J]. 发光学报, 2020, 41(11): 1376-1382. doi: 10.37188/cjl.20200187http://dx.doi.org/10.37188/cjl.20200187
FANG J, CHEN Z T, SHEN J R, et al. Property of CsPbBr3 perovskite nanocrystals prepared in different solvents [J]. Chin. J. Lumin., 2020, 41(11): 1376-1382. (in Chinese). doi: 10.37188/cjl.20200187http://dx.doi.org/10.37188/cjl.20200187
曾海波, 董宇辉. 钙钛矿量子点: 机遇与挑战 [J]. 发光学报, 2020, 41(8): 940-944. doi: 10.37188/fgxb20204108.0940http://dx.doi.org/10.37188/fgxb20204108.0940
ZENG H B, DONG Y H. Perovskite quantum dots: opportunities and challenges [J]. Chin. J. Lumin., 2020, 41(8): 940-944. (in Chinese). doi: 10.37188/fgxb20204108.0940http://dx.doi.org/10.37188/fgxb20204108.0940
GU H, ZHAO C, ZHANG Y Q, et al. Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers [J]. Nanotechnology, 2018, 29(38): 385401-1-9. doi: 10.1088/1361-6528/aacf7chttp://dx.doi.org/10.1088/1361-6528/aacf7c
YANG D D, LI X M, ZHOU W H, et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification [J]. Adv. Mater., 2019, 31(30): 1900767-1-8. doi: 10.1002/adma.201970049http://dx.doi.org/10.1002/adma.201970049
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals [J]. ACS Nano, 2016, 10(2): 2071-2081. doi: 10.1021/acsnano.5b06295http://dx.doi.org/10.1021/acsnano.5b06295
AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals [J]. Nat. Mater., 2018, 17(5): 394-405. doi: 10.1038/s41563-018-0018-4http://dx.doi.org/10.1038/s41563-018-0018-4
RAVI V K, MARKAD G B, NAG A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals [J]. ACS Energy Lett., 2016, 1(4): 665-671. doi: 10.1021/acsenergylett.6b00337http://dx.doi.org/10.1021/acsenergylett.6b00337
SEKI K. Equivalent circuit representation of hysteresis in solar cells that considers interface charge accumulation: potential cause of hysteresis in perovskite solar cells [J]. Appl. Phys. Lett., 2016, 109(3): 033905-1-4. doi: 10.1063/1.4959247http://dx.doi.org/10.1063/1.4959247
MEI A Y, LI X, LIU L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability [J]. Science, 2014, 345(6194): 295-298. doi: 10.1126/science.1254763http://dx.doi.org/10.1126/science.1254763
EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells [J]. Energy Environ. Sci., 2014, 7(3): 982-988. doi: 10.1039/c3ee43822hhttp://dx.doi.org/10.1039/c3ee43822h
YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange [J]. Science, 2015, 348(6240): 1234-1237. doi: 10.1126/science.aaa9272http://dx.doi.org/10.1126/science.aaa9272
WANG Y, LI X M, SONG J Z, et al. ChemInform abstract: all inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics [J]. ChemInform, 2015, 47(5): 7101-7108. doi: 10.1002/chin.201605008http://dx.doi.org/10.1002/chin.201605008
DESCHLER F, PRICE M, PATHAK S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors [J]. J. Phys. Chem. Lett., 2014, 5(8): 1421-1426. doi: 10.1021/jz5005285http://dx.doi.org/10.1021/jz5005285
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence [J]. J. Am. Chem. Soc., 2016, 138(43): 14202-14205. doi: 10.1021/jacs.6b08900http://dx.doi.org/10.1021/jacs.6b08900
RAMASAMY P, LIM D H, KIM B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications [J]. Chem. Commun., 2016, 52(10): 2067-2070. doi: 10.1039/c5cc08643dhttp://dx.doi.org/10.1039/c5cc08643d
KIM Y H, CHO H, HEO J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes [J]. Adv. Mater., 2015, 27(7): 1248-1254. doi: 10.1002/adma.201403751http://dx.doi.org/10.1002/adma.201403751
LI G R, TAN Z K, DI D W, et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix [J]. Nano Lett., 2015, 15(4): 2640-2644. doi: 10.1021/acs.nanolett.5b00235http://dx.doi.org/10.1021/acs.nanolett.5b00235
ZHANG X Y, SUN C, ZHANG Y, et al. Bright perovskite nanocrystal films for efficient light-emitting devices [J]. J. Phys. Chem. Lett., 2016, 7(22): 4602-4610. doi: 10.1021/acs.jpclett.6b02073http://dx.doi.org/10.1021/acs.jpclett.6b02073
SUN R, LU P, ZHOU D L, et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes [J]. ACS Energy Lett., 2020, 5(7): 2131-2139. doi: 10.1021/acsenergylett.0c00931http://dx.doi.org/10.1021/acsenergylett.0c00931
LI C W, SONG Z N, ZHAO D W, et al. Reducing saturation‐current density to realize high-efficiency low-bandgap mixed tin-lead halide perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(3): 1803135-1-9. doi: 10.1002/aenm.201803135http://dx.doi.org/10.1002/aenm.201803135
HASAN S A U, LEE D S, IM S H, et al. Present status and research prospects of tin-based perovskite solar cells [J]. Solar RRL, 2020, 4(2): 1900310. doi: 10.1002/solr.201900310http://dx.doi.org/10.1002/solr.201900310
JIANG F Y, YANG D W, JIANG Y Y, et al. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells [J]. J. Am. Chem. Soc., 2018, 140(3): 1019-1027. doi: 10.1021/jacs.7b10739http://dx.doi.org/10.1021/jacs.7b10739
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(6): 733-754. doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SU B B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials [J]. Chin. J. Lumin., 2021, 42(6): 733-754. (in Chinese). doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
KWON S B, CHOI S H, YOO J H, et al. Organic solvent-free lyophilization assisted recrystallization synthesis of high-purity green emissive Cs3MnX5 (X=I, Br) [J]. J. Alloys Compd., 2020, 845: 156324-1-7. doi: 10.1016/j.jallcom.2020.156324http://dx.doi.org/10.1016/j.jallcom.2020.156324
SU B B, MOLOKEEV M S, XIA Z G. Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying [J]. J. Mater. Chem. C, 2019, 7(36): 11220-11226. doi: 10.1039/c9tc04127chttp://dx.doi.org/10.1039/c9tc04127c
SHAO L, ZHOU D L, DING N, et al. Broadband ultraviolet photodetectors based on cerium doped lead-free Cs3MnBr5 metal halide nanocrystals [J]. ACS Sustainable Chem. Eng., 2021, 9(14): 4980-4987. doi: 10.1021/acssuschemeng.0c07911http://dx.doi.org/10.1021/acssuschemeng.0c07911
KONG Q K, YANG B, CHEN J S, et al. Phase engineering of cesium manganese bromides nanocrystals with color‐tunable emission [J]. Angew. Chem., 2021, 133(36): 19805-19811. doi: 10.1002/ange.202105413http://dx.doi.org/10.1002/ange.202105413
ALMUTLAQ J, MIR W J, GUTIÉRREZ-ARZALUZ L, et al. CsMnBr3: lead-free nanocrystals with high photoluminescence quantum yield and picosecond radiative lifetime [J]. ACS Mater. Lett., 2021, 3(3): 290-297. doi: 10.1021/acsmaterialslett.0c00603http://dx.doi.org/10.1021/acsmaterialslett.0c00603
RODRÍGUEZ-LAZCANO Y, NATAF L, RODRÍGUEZ F. Electronic structure and luminescence of [(CH3)4N]2MnX4(X=Cl, Br) crystals at high pressures by time-resolved spectroscopy: pressure effects on the Mn-Mn exchange coupling [J]. Phys. Rev. B, 2009, 80(8): 085115-1-11. doi: 10.1103/physrevb.80.085115http://dx.doi.org/10.1103/physrevb.80.085115
0
Views
293
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution