浏览全部资源
扫码关注微信
1.湖南师范大学 化学化工学院, 湖南 长沙 410081
2.湖南普斯赛特光电科技有限公司, 湖南 长沙 410116
Published:05 August 2022,
Received:09 April 2022,
Revised:23 April 2022,
移动端阅览
万萍萍,杨静,刘红秀等.利用乳糖酸的钝化效应提升K2SiF6∶Mn4+的耐湿性[J].发光学报,2022,43(08):1300-1308.
WAN Ping-ping,YANG Jing,LIU Hong-xiu,et al.Improving Moisture Resistance of K2SiF6∶Mn4+via Passivation Effect of Lactobionic Acid[J].Chinese Journal of Luminescence,2022,43(08):1300-1308.
万萍萍,杨静,刘红秀等.利用乳糖酸的钝化效应提升K2SiF6∶Mn4+的耐湿性[J].发光学报,2022,43(08):1300-1308. DOI: 10.37188/CJL.20220127.
WAN Ping-ping,YANG Jing,LIU Hong-xiu,et al.Improving Moisture Resistance of K2SiF6∶Mn4+via Passivation Effect of Lactobionic Acid[J].Chinese Journal of Luminescence,2022,43(08):1300-1308. DOI: 10.37188/CJL.20220127.
耐湿性差是掺Mn
4+
氟化物红色荧光粉在高稳定性器件应用中面临的一个瓶颈问题。本工作提出利用乳糖酸的钝化效应清除K
2
SiF
6
∶Mn
4+
表面的Mn
4+
,重构无Mn
4+
的氟化物惰性壳层,以提升其耐湿性。结果表明,经乳糖酸钝化后的氟化物的晶相、形貌及发光强度几乎不变。水浸360 h后,钝化的氟化物的内量子效率为96.9%,远高于未处理的氟化物的59.8%。经乳糖酸处理,水解后的氟化物的内量子产率可以恢复到98.8%。在60 mA驱动电流下,将钝化后的氟化物作为红光成分,封装了相关色温为3 518 K、显色指数为88.5、发光效率为130.61 lm·W
-1
的暖白光LED。在高温(85
℃)高湿(85%)环境中老化500 h后,该LED器件具有较高稳定性,光效可维持为初始值的90.5%,高于未经处理的氟化物所封装的白光器件(82.3%)。因此,简单的乳糖酸处理可以有效提升掺Mn
4+
氟化物的耐湿性。本工作可为高稳定性氟化物红色荧光粉的工业化生产提供借鉴。
Poor moisture resistance is a bottleneck for the application of Mn
4+
-doped fluoride red phosphors in high-stability devices. This work proposes to use the passivation effect of lactobionic acid to remove Mn
4+
on the surface of K
2
SiF
6
∶Mn
4+
, and reconstruct the Mn
4+
-free fluoride inert shell to improve its moisture resistance. The results show that the crystal phase, morphology and luminescence intensity of the passivated fluoride are almost unchanged. After 360 h of water immersion, the internal quantum efficiency of the passivated fluoride is 96.9%, which is much higher than that(59.8%) of the untreated fluoride. After treatment with lactobionic acid, the internal quantum yield of hydrolyzed fluoride can be recovered to 98.8%. At a driving current of 60 mA, a warm white LED with a correlated color temperature of 3 518 K, a color rendering index of 88.5, and a luminous efficiency of 130.61 lm·W
-1
was encapsulated by using the passivated fluoride as the red-light component. After aging in a high temperature(85 ℃) and high humidity(85%) environment for 500 h, the LED device has high stability, and the luminous efficiency can maintain at 90.5% of the initial value, which is higher than that(82.3%) of white LED encapsulated with the untreated fluoride. Therefore, the simple lactobionic acid treatment can effectively improve the moisture resistance of Mn
4+
-doped fluorides. This work can provide a reference for the industrial production of highly stable fluoride red phosphors.
K2SiF6∶Mn4+耐湿性惰性壳层白光LED乳糖酸
K2SiF6∶Mn4+moisture resistanceinert shellwhite LEDlactobionic acid
LIN C C, MEIJERINK A, LIU R S. Critical red components for next-generation white LEDs [J]. J. Phys. Chem. Lett., 2016, 7(3): 495-503. doi: 10.1021/acs.jpclett.5b02433http://dx.doi.org/10.1021/acs.jpclett.5b02433
MOON J W, MIN B G, KIM J S, et al. Optical characteristics and longevity of the line-emitting K2SiF6∶Mn4+ phosphor for LED application [J]. Opt. Mater. Express, 2016, 6(3): 782-792. doi: 10.1364/ome.6.000782http://dx.doi.org/10.1364/ome.6.000782
章伟, 何梦婷, 乔旭升, 等. Mn4+激活的典型LED红色荧光粉研究进展 [J]. 发光学报, 2021, 42(9): 1345-1364. doi: 10.37188/CJL.20210148http://dx.doi.org/10.37188/CJL.20210148
ZHANG W, HE M T, QIAO X S, et al. Research progress of Mn4+ activated typical LED red phosphors [J]. Chin. J. Lumin., 2021, 42(9): 1345-1364. (in Chinese). doi: 10.37188/CJL.20210148http://dx.doi.org/10.37188/CJL.20210148
FANG M H, WU W L, JIN Y, et al. Control of luminescence by tuning of crystal symmetry and local structure in Mn4+-activated narrow band fluoride phosphors [J]. Angew. Chem. Int. Ed. Engl., 2018, 57(7): 1797-1801. doi: 10.1002/anie.201708814http://dx.doi.org/10.1002/anie.201708814
周亚运, 王玲燕, 邓婷婷, 等. Mn4+掺杂氟化物窄带发射红色荧光粉的研究进展 [J]. 中国科学: 技术科学, 2017, 47(11): 1111-1125.
ZHOU Y Y, WANG L Y, DENG T T, et al. Recent advances in Mn4+-doped fluoride narrow-band red-emitting phosphors [J]. Sci. Sinica Technol., 2017, 47(11): 1111-1125. (in Chinese)
CHEN D Q, ZHOU Y, ZHONG J S. A review on Mn4+ activators in solids for warm white light-emitting diodes [J]. RSC Adv., 2016, 6(89): 86285-86296. doi: 10.1039/c6ra19584ahttp://dx.doi.org/10.1039/c6ra19584a
WANG Z L, YANG Z Y, WANG N, et al. Single-crystal red phosphors: enhanced optical efficiency and improved chemical stability for wLEDs [J]. Adv. Opt. Mater., 2020, 8(6): 1901512-1-5. doi: 10.1002/adom.201901512http://dx.doi.org/10.1002/adom.201901512
LIAN H Z, HUANG Q M, CHEN Y Q, et al. Resonance emission enhancement(REE) for narrow band red-emitting A2GeF6∶Mn4+(A = Na, K, Rb, Cs) phosphors synthesized via a precipitation-cation exchange route [J]. Inorg. Chem., 2017, 56(19): 11900-11910. doi: 10.1021/acs.inorgchem.7b01890http://dx.doi.org/10.1021/acs.inorgchem.7b01890
ZHANG J F, LIU L L, HE S G, et al. Cs2MnF6 red phosphor with ultrahigh absorption efficiency [J]. Inorg. Chem., 2019, 58(22): 15207-15215. doi: 10.1021/acs.inorgchem.9b02140http://dx.doi.org/10.1021/acs.inorgchem.9b02140
LUO X F, HOU Z Y, ZHOU T L, et al. A universal HF-free synthetic method to highly efficient narrow-band red-emitting A2XF6∶Mn4+(A=K, Na, Rb, Cs; X=Si, Ge, Ti) phosphors [J]. J. Am. Ceram. Soc., 2020, 103(2): 1018-1026. doi: 10.1111/jace.16762http://dx.doi.org/10.1111/jace.16762
HONG F, XU H P, PANG G, et al. Moisture resistance, luminescence enhancement, energy transfer and tunable color of novel core-shell structure BaGeF6∶Mn4+ phosphor [J]. Chem. Eng. J., 2020, 390: 124579-1-12. doi: 10.1016/j.cej.2020.124579http://dx.doi.org/10.1016/j.cej.2020.124579
HUANG L, LIU Y, SI S C, et al. A new reductive DL-mandelic acid loading approach for moisture-stable Mn4+ doped fluorides [J]. Chem. Commun., 2018, 54(84): 11857-11860. doi: 10.1039/c8cc05850dhttp://dx.doi.org/10.1039/c8cc05850d
ZHOU Y Y, SONG E H, DENG T T, et al. Surface passivation toward highly stable Mn4+-activated red-emitting fluoride phosphors and enhanced photostability for white LEDs [J]. Adv. Mater. Interfaces, 2019, 6(9): 1802006-1-15. doi: 10.1002/admi.201802006http://dx.doi.org/10.1002/admi.201802006
VERSTRAETE R, SIJBOM H F, KORTHOUT K, et al. K2MnF6 as a precursor for saturated red fluoride phosphors: the struggle for structural stability [J]. J. Mater. Chem. C, 2017, 5(41): 10761-10769. doi: 10.1039/c7tc02992fhttp://dx.doi.org/10.1039/c7tc02992f
VERSTRAETE R, SIJBOM H F, JOOS J J, et al. Red Mn4+-doped fluoride phosphors: why purity matters [J]. ACS Appl. Mater. Interfaces, 2018, 10(22): 18845-18856. doi: 10.1021/acsami.8b01269http://dx.doi.org/10.1021/acsami.8b01269
DENG T T, SONG E H, ZHOU Y Y, et al. Stable narrowband red phosphor K3GaF6∶Mn4+ derived from hydrous K2GaF5(H2O) and K2MnF6 [J]. J. Mater. Chem. C, 2017, 5(37): 9588-9596. doi: 10.1039/c7tc03116ehttp://dx.doi.org/10.1039/c7tc03116e
HUANG D C, ZHU H M, DENG Z H, et al. Moisture-resistant Mn4+-doped core-shell-structured fluoride red phosphor exhibiting high luminous efficacy for warm white light-emitting diodes [J]. Angew. Chem. Int. Ed. Engl., 2019, 58(12): 3843-3847. doi: 10.1002/anie.201813363http://dx.doi.org/10.1002/anie.201813363
NGUYEN H D, LIN C C, LIU R S. Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials [J]. Angew. Chem. Int. Ed. Engl., 2015, 54(37): 10862-10866. doi: 10.1002/anie.201504791http://dx.doi.org/10.1002/anie.201504791
VERSTRAETE R, RAMPELBERG G, RIJCKAERT H, et al. Stabilizing fluoride phosphors: surface modification by atomic layer deposition [J]. Chem. Mater., 2019, 31(18): 7192-7202. doi: 10.1021/acs.chemmater.9b01491http://dx.doi.org/10.1021/acs.chemmater.9b01491
ARUNKUMAR P, KIM Y H, KIM H J, et al. Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices [J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7232-7240. doi: 10.1021/acsami.6b14012http://dx.doi.org/10.1021/acsami.6b14012
FANG M H, HSU C S, SU C, et al. Integrated surface modification to enhance the luminescence properties of K2TiF6∶Mn4+ phosphor and its application in white-light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2018, 10(35): 29233-29237. doi: 10.1021/acsami.8b12170http://dx.doi.org/10.1021/acsami.8b12170
LI Y L, YU Y, ZHONG X, et al. Water resistance, thermal stability, luminescence enhancement of core-double shell structure K2TiF6∶Mn4+ phosphor [J]. J. Lumin., 2022, 244: 118728. doi: 10.1016/j.jlumin.2022.118728http://dx.doi.org/10.1016/j.jlumin.2022.118728
HUANG L, LIU Y, YU J B, et al. Highly stable K2SiF6∶Mn4+@K2SiF6 composite phosphor with narrow red emission for white LEDs [J]. ACS Appl. Mater. Interfaces, 2018, 10(21): 18082-18092. doi: 10.1021/acsami.8b03893http://dx.doi.org/10.1021/acsami.8b03893
JIANG C Y, BRIK M G, SRIVASTAVA A M, et al. Significantly conquering moisture-induced luminescence quenching of red line-emitting phosphor Rb2SnF6∶Mn4+ through H2C2O4 triggered particle surface reduction for blue converted warm white light-emitting diodes [J]. J. Mater. Chem. C, 2019, 7(2): 247-255. doi: 10.1039/c8tc05207ghttp://dx.doi.org/10.1039/c8tc05207g
LIU L L, WU D, HE S G, et al. A reverse strategy to restore the moisture-deteriorated luminescence properties and improve the humidity resistance of Mn4+-doped fluoride phosphors [J]. Chem. Asian J., 2020, 15(20): 3326-3337. doi: 10.1002/asia.202000863http://dx.doi.org/10.1002/asia.202000863
BODE H, JENSSEN H, BANDTE F. Über eine neue darstellung des kalium-hexafluoromanganats(Ⅳ) [J]. Angew. Chem., 1953, 65: 304. doi: 10.1002/ange.19530651108http://dx.doi.org/10.1002/ange.19530651108
LIAO C X, CAO R P, MA Z J, et al. Synthesis of K2SiF6∶Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED [J]. J. Am. Ceram. Soc., 2013, 96(11): 3552-3556. doi: 10.1111/jace.12533http://dx.doi.org/10.1111/jace.12533
QIU S J, WEI H W, WANG X M, et al. Red emitting phosphor K2SiF6∶Mn4+: controlled synthesis, growth mechanism, and shape-dependent luminescence properties [J]. J. Lumin., 2020, 226: 117426. doi: 10.1016/j.jlumin.2020.117426http://dx.doi.org/10.1016/j.jlumin.2020.117426
YANG J, LUO P L, WAN P P, et al. Surface engineered environment-stable red-emitting fluorides for white light emitting diodes [J]. Ceram. Int., 2022, 48(4): 5009-5016. doi: 10.1016/j.ceramint.2021.11.038http://dx.doi.org/10.1016/j.ceramint.2021.11.038
BISINELLA R Z B, RIBEIRO J C B, DE OLIVEIRA C S, et al. Some instrumental methods applied in food chemistry to characterise lactulose and lactobionic acid [J]. Food Chem., 2017, 220: 295-298. doi: 10.1016/j.foodchem.2016.10.018http://dx.doi.org/10.1016/j.foodchem.2016.10.018
KUMAR V, POTDEVIN A, BOUTINAUD P, et al. HF-free synthesis of K2SiF6 and BaSiF6 nanoparticles by thermal decomposition [J]. Mater. Lett., 2020, 261: 127123-1-3. doi: 10.1016/j.matlet.2019.127123http://dx.doi.org/10.1016/j.matlet.2019.127123
WAN P P, LIANG Z J, LUO P L, et al. Reconstruction of Mn4+-free shell achieving highly stable red-emitting fluoride phosphors for light-emitting diodes [J]. Chem. Eng. J., 2021, 426: 131350. doi: 10.1016/j.cej.2021.131350http://dx.doi.org/10.1016/j.cej.2021.131350
0
Views
451
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution