浏览全部资源
扫码关注微信
1.常州大学材料科学与工程学院 江苏省光电热能量转化材料与应用工程实验室, 江苏 常州 213164
2.湘潭大学 化学学院, 湖南 湘潭 411105
Published:05 August 2022,
Received:29 March 2022,
Revised:12 April 2022,
移动端阅览
陈俊,徐颖,徐超等.辅助配体功能化铱(Ⅲ)配合物近红外电致发光材料的合成及其性能[J].发光学报,2022,43(08):1217-1226.
CHEN Jun,XU Ying,XU Chao,et al.Synthesis and Properties of Near Infrared-emitting Iridium(Ⅲ) Complexes with Auxiliary Ligand Functionalized[J].Chinese Journal of Luminescence,2022,43(08):1217-1226.
陈俊,徐颖,徐超等.辅助配体功能化铱(Ⅲ)配合物近红外电致发光材料的合成及其性能[J].发光学报,2022,43(08):1217-1226. DOI: 10.37188/CJL.20220114.
CHEN Jun,XU Ying,XU Chao,et al.Synthesis and Properties of Near Infrared-emitting Iridium(Ⅲ) Complexes with Auxiliary Ligand Functionalized[J].Chinese Journal of Luminescence,2022,43(08):1217-1226. DOI: 10.37188/CJL.20220114.
将烷基芴(Fluorene,FL)基团通过柔性烷基链连接到吡啶甲酸(Picolinic acid,pic)上,合成了辅助配体功能化的供体‐受体(D‐A)型铱配合物近红外电致发光材料(CH
3
OTPA‐BTz‐Iq)
2
Ir(pic‐FL)(TPA:Triphenylamine为三苯胺,BTz:Benzotriazole为苯并三唑,Iq:Isoquinoline为异喹啉)。通过对其紫外‐可见吸收光谱和光致发光光谱研究发现,由于主配体中强D‐A作用的CH
3
OTPA‐BTz结构,配合物具有强分子内电荷转移跃迁(Charge transfer transition,ICT)吸收峰和720 nm左右的光致发光峰。与此同时,(CH
3
OTPA‐BTz‐Iq)
2
Ir(pic‐FL)分子中柔性烷基链和高荧光量子效率芴基团的引入,可以提高材料光致发光效率,改善材料的溶解性能和器件成膜性能,提高电致发光效率。以配合物为发光掺杂剂制备的有机电致发光器件其最大发射峰位于722 nm左右的近红外区域,最大外量子效率(EQE
max
)为0.92%,是其母体配合物(CH
3
OTPA‐BTz‐Iq)
2
‐Irpic器件效率的2.24倍(EQE
max
为0.41%@723 nm)。
In this paper, a novel auxiliary ligand functionalized donor-acceptor(D-A) type near infrared-emitting iridium(Ⅲ) complex (CH
3
OTPA-BTz-Iq)
2
Ir(pic-FL) was synthesized by connecting alkylfluorene(FL) to picolinic acid(pic). Through the study of UV-Vis absorption and photoluminescence spectrum, the complex has a strong intramolecular charge transfer transition (ICT) absorption peak and a photoluminescence peak about 720 nm due to the strong D-A effect of the CH
3
OTPA-BTz-Iq ligand. Furthermore, the photoluminescence and electroluminescent properties of (CH
3
OTPA-BTz-Iq)
2
Ir(pic-FL) were improved by introducing alkyl chains and FL group with high fluorescence quantum efficiency, good solubility and film forming performance. In (CH
3
OTPA-BTz-Iq)
2
Ir‐(pic-FL)-based OLEDs, a maximum external quantum efficiency (EQE
max
) of 0.92% at 722 nm was obtained, which is much superior than that of the (CH
3
OTPA-BTz-Iq)
2
Irpic-based OLEDs (0.41% at 723 nm).
铱(Ⅲ)配合物芴供体-受体近红外电致发光
iridium(Ⅲ) complexfluorenedonor-acceptornear infraredelectroluminescence
LY K T, CHEN-CHENG R W, LIN H W, et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance [J]. Nat. Photonics, 2017, 11(1): 63-68. doi: 10.1038/nphoton.2016.230http://dx.doi.org/10.1038/nphoton.2016.230
WANG S F, YUAN Y, WEI Y C, et al. Highly efficient near-infrared electroluminescence up to 800 nm using platinum(Ⅱ) phosphors [J]. Adv. Funct. Mater., 2020, 30(30): 2002173-1-9. doi: 10.1002/adfm.202002173http://dx.doi.org/10.1002/adfm.202002173
常鹏, 韩春苗, 许辉. 近红外有机小分子电致发光材料研究进展 [J]. 液晶与显示, 2021, 36(1): 62-77. doi: 10.37188/CJLCD.2020-0207http://dx.doi.org/10.37188/CJLCD.2020-0207
CHANG P, HAN C M, XU H. Research progress of near infrared organic small-molecule electroluminescent materials [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1): 62-77. (in Chinese). doi: 10.37188/CJLCD.2020-0207http://dx.doi.org/10.37188/CJLCD.2020-0207
张松涛, 王樱蕙, 张洪杰. 稀土发光材料在近红外二区成像中的应用 [J]. 发光学报, 2020, 41(12): 1460-1478. doi: 10.37188/CJL.20200340http://dx.doi.org/10.37188/CJL.20200340
ZHANG S T, WANG Y H, ZHANG H J. Lanthanide-doped fluorescence probes for NIR-Ⅱ fluorescence imaging [J]. Chin. J. Lumin., 2020, 41(12): 1460-1478. (in Chinese). doi: 10.37188/CJL.20200340http://dx.doi.org/10.37188/CJL.20200340
BALIJAPALLI U, NAGATA R, YAMADA N, et al. Highly efficient near-infrared electrofluorescence from a thermally activated delayed fluorescence molecule [J]. Angew. Chem., Int. Ed., 2021, 60(15): 8477-8482. doi: 10.1002/anie.202016089http://dx.doi.org/10.1002/anie.202016089
JACKSON C T, JEONG S, DORLHIAC G F, et al. Advances in engineering near-infrared luminescent materials [J]. iScience, 2021, 24(3): 102156-1-21. doi: 10.1016/j.isci.2021.102156http://dx.doi.org/10.1016/j.isci.2021.102156
ZHANG Y X, QIAO J. Near-infrared emitting iridium complexes: molecular design, photophysical properties, and related applications [J]. iScience, 2021, 24(8): 102858. doi: 10.1016/j.isci.2021.102858http://dx.doi.org/10.1016/j.isci.2021.102858
周港杰, 胡艺萱, 谭林玲, 等. 碲掺杂钙-铝-锗酸盐玻璃宽带近红外发光及其调控机理 [J]. 发光学报, 2022, 43(1): 51-57. doi: 10.37188/CJL.20210337http://dx.doi.org/10.37188/CJL.20210337
ZHOU G J, HU Y X, TAN L L, et al. Broadband near-infrared luminescence and regulation mechanism of tellurium-doped calcium-aluminum-germanate glass [J]. Chin. J. Lumin., 2022, 43(1): 51-57. (in Chinese). doi: 10.37188/CJL.20210337http://dx.doi.org/10.37188/CJL.20210337
徐冀健, 曲丹, 安丽, 等. 红光/近红外发射碳点制备、光学调控与应用 [J]. 发光学报, 2021, 42(12): 1837-1851. doi: 10.37188/CJL.20210302http://dx.doi.org/10.37188/CJL.20210302
XU J J, QU D, AN L, et al. Preparation, optical control and application of red/near infrared emitting carbon dots [J]. Chin. J. Lumin., 2021, 42(12): 1837-1851. (in Chinese). doi: 10.37188/CJL.20210302http://dx.doi.org/10.37188/CJL.20210302
WILLIAMS E L, LI J, JABBOUR G E, et al. Organic light-emitting diodes having exclusive near-infrared electrophosphorescence [J]. Appl. Phys. Lett., 2006, 89(8): 083506-1-3. doi: 10.1063/1.2335275http://dx.doi.org/10.1063/1.2335275
QIAO J, DUAN L, TANG L T, et al. High-efficiency orange to near-infrared emissions from bis-cyclometalated iridium complexes with phenyl-benzoquinoline isomers as ligands [J]. J. Mater. Chem., 2009, 19(36): 6573-6580. doi: 10.1039/b906675fhttp://dx.doi.org/10.1039/b906675f
TAO R, QIAO J, ZHANG G L, et al. Efficient near-infrared-emitting cationic iridium complexes as dopants for OLEDs with small efficiency roll-off [J]. J. Phys. Chem. C, 2012, 116(21): 11658-11664. doi: 10.1021/jp301740chttp://dx.doi.org/10.1021/jp301740c
TAO R, QIAO J, ZHANG G L, et al. High-efficiency near-infrared organic light-emitting devices based on an iridium complex with negligible efficiency roll-off [J]. J. Mater. Chem. C, 2013, 1(39): 6446-6454. doi: 10.1039/c3tc30866ahttp://dx.doi.org/10.1039/c3tc30866a
CAO X S, MIAO J S, ZHU M R, et al. Near-infrared polymer light-emitting diodes with high efficiency and low efficiency roll-off by using solution-processed iridium(Ⅲ) phosphors [J]. Chem. Mater., 2015, 27(1): 96-104. doi: 10.1021/cm503361jhttp://dx.doi.org/10.1021/cm503361j
XIN L J, Xue J, Lei G T, et al. Efficient near-infrared-emitting cationic iridium complexes based on highly conjugated cyclometalated benzo[g]phthalazine derivatives [J]. RSC Adv., 2015, 5(53): 42354-42361. doi: 10.1039/c5ra04511hhttp://dx.doi.org/10.1039/c5ra04511h
KESARKAR S, MRÓZ W, PENCONI M, et al. Near-IR emitting iridium(Ⅲ) complexes with heteroaromatic β-diketonate ancillary ligands for efficient solution-processed OLEDs: structure-property correlations [J]. Angew. Chem., Int. Ed., 2016, 55(8): 2714-2718. doi: 10.1002/anie.201509798http://dx.doi.org/10.1002/anie.201509798
XUE J, XIN L J, HOU J Y, et al. Homoleptic facial Ir(Ⅲ) complexes via facile synthesis for high-efficiency and low-roll-off near-infrared organic light-emitting diodes over 750 nm [J]. Chem. Mater., 2017, 29(11): 4775-4782. doi: 10.1021/acs.chemmater.7b00518http://dx.doi.org/10.1021/acs.chemmater.7b00518
CHEN Z, WANG L Q, HO C L, et al. Smart design on the cyclometalated ligands of iridium(Ⅲ) complexes for facile tuning of phosphorescence color spanning from deep-blue to near-infrared [J]. Adv. Opt. Mater., 2018, 6(23): 1800824. doi: 10.1002/adom.201800824http://dx.doi.org/10.1002/adom.201800824
CHEN Z, ZHANG H Y, WEN D W, et al. A simple and efficient approach toward deep-red to near-infrared-emitting iridium(Ⅲ) complexes for organic light-emitting diodes with external quantum efficiencies of over 10% [J]. Chem. Sci., 2020, 11(9): 2342-2349. doi: 10.1039/c9sc05492hhttp://dx.doi.org/10.1039/c9sc05492h
YOU C F, LIU D H, YU J T, et al. Boosting efficiency of near-infrared emitting iridium(Ⅲ) phosphors by administrating their π‐π conjugation effect of core-shell structure in solution-processed OLEDs [J]. Adv. Opt. Mater., 2020, 8(18): 2000154-1-10. doi: 10.1002/adom.202000154http://dx.doi.org/10.1002/adom.202000154
YU J T, LI M Q, XU C, et al. Near-infrared cyclometalated iridium(Ⅲ) complexes with bipolar features for efficient OLEDs via solution-processing [J]. Dalton Trans., 2020, 49(25): 8785-8790. doi: 10.1039/d0dt01415jhttp://dx.doi.org/10.1039/d0dt01415j
ZHANG Y X, LI Q, CAI M H, et al. An 850 nm pure near-infrared emitting iridium complex for solution-processed organic light-emitting diodes [J]. J. Mater. Chem. C, 2020, 8(25): 8484-8492. doi: 10.1039/d0tc01614dhttp://dx.doi.org/10.1039/d0tc01614d
LEE S Y, YASUDA T, YANG Y S, et al. Luminous butterflies: efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs [J]. Angew. Chem., Int. Ed., 2014, 53(25): 6402-6406. doi: 10.1002/anie.201402992http://dx.doi.org/10.1002/anie.201402992
YAN Y, SUN N W, LI F F, et al. Multiple stimuli-responsive fluorescence behavior of novel polyamic acid bearing oligoaniline, triphenylamine, and fluorene groups [J]. ACS Appl. Mater. Interfaces, 2017, 9(7): 6497-6503. doi: 10.1021/acsami.6b16402http://dx.doi.org/10.1021/acsami.6b16402
YU J T, TAN H, MENG F Y, et al. Benzotriazole-containing donor-acceptor-acceptor type cyclometalated iridium(Ⅲ) complex for solution-processed near-infrared polymer light emitting diodes [J]. Dyes Pigments, 2016, 131: 231-238. doi: 10.1016/j.dyepig.2016.04.021http://dx.doi.org/10.1016/j.dyepig.2016.04.021
WANG Y F, TAN H, LIU Y, et al. Synthesis, opto-physics, and electroluminescence of cyclometalated iridium (Ⅲ) complex with alkyltrifluorene picolinic acid [J]. Tetrahedron, 2010, 66(7): 1483-1488. doi: 10.1016/j.tet.2009.12.001http://dx.doi.org/10.1016/j.tet.2009.12.001
0
Views
300
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution