浏览全部资源
扫码关注微信
太原理工大学 新型传感器与智能控制教育部与山西省重点实验室, 山西 太原 030024
Published:05 August 2022,
Received:29 March 2022,
Revised:18 April 2022,
移动端阅览
杨敏,岳鹏,廉岚淇等.基于声化学法合成的CsPbBr3钙钛矿微晶双光子发光特性[J].发光学报,2022,43(08):1207-1216.
YANG Min,YUE Peng,LIAN Lan-qi,et al.Two-photon Luminescence of CsPbBr3 Perovskite Microcrystals Fabricated with Sonochemistry Synthesis Method[J].Chinese Journal of Luminescence,2022,43(08):1207-1216.
杨敏,岳鹏,廉岚淇等.基于声化学法合成的CsPbBr3钙钛矿微晶双光子发光特性[J].发光学报,2022,43(08):1207-1216. DOI: 10.37188/CJL.20220113.
YANG Min,YUE Peng,LIAN Lan-qi,et al.Two-photon Luminescence of CsPbBr3 Perovskite Microcrystals Fabricated with Sonochemistry Synthesis Method[J].Chinese Journal of Luminescence,2022,43(08):1207-1216. DOI: 10.37188/CJL.20220113.
全无机金属卤化物钙钛矿材料的非线性光学效应对构建新型微纳光子器件具有重要意义。本文重点研究了微米尺度CsPbBr
3
钙钛矿单晶颗粒的双光子发射特性,实验中基于声化学合成法制备了不同尺寸的CsPbBr
3
微晶颗粒,通过对激发光能量密度、波长、偏振的调整,研究了其对双光子发光特性的影响。实验结果表明在室温下CsPbBr
3
微晶即具有较强的双光子发光。波长相关的光致发光光谱表明,同一吸收带隙下,其发光峰位相对于单光子发射变化不大,且随着激发波长的增大双光子发射强度逐渐降低。此外,CsPbBr
3
微晶颗粒双光子发射具有偏振依赖性行为,偏振角度在0°~360°范围内呈现四重对称性。上述CsPbBr
3
微晶的双光子发光特性使其有望用于非线性集成器件。
The nonlinear optical effect of all-inorganic metal halide perovskite materials is important for the design of novel micro- and nano-photonic devices. In this paper, the two-photon luminescence of micro-scale CsPbBr
3
perovskite single crystal particles is investigated. In the experiment, CsPbBr
3
microcrystals with different sizes were prepared based on the sonochemistry synthesis method, and the variations of the two-photon luminescence were studied by adjusting the energy density, wavelength and polarization of the pump laser beam. The experimental results demonstrate that the CsPbBr
3
microcrystals possess strong two-photon luminescence at room temperature. The wavelength-dependent two-photon luminescence spectrum shows that under the same absorption band gap, the luminescence peak position does not change much compared with the single-photon emission, and the two-photon emission intensity gradually decreases with the increase of excitation wavelength. In addition, the two-photon emission of CsPbBr
3
microcrystals reveals polarization-dependent behavior and the polarization angle presents quadruple symmetry in the range of 0°-360°. The two-photon luminescence responses of the CsPbBr
3
microcrystals make them promising for nonlinear integrated devices.
CsPbBr3钙钛矿微晶光致发光双光子发光非线性效应
CsPbBr3 perovskite microcrystalsphotoluminescencetwo-photon luminescencenonlinear effect
SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot—induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics [J]. Science, 2016, 354(6308): 92-95. doi: 10.1126/science.aag2700http://dx.doi.org/10.1126/science.aag2700
XING J, YAN F, ZHAO Y W, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles [J]. ACS Nano, 2016, 10(7): 6623-6630. doi: 10.1021/acsnano.6b01540http://dx.doi.org/10.1021/acsnano.6b01540
刘王宇, 陈斐, 孔淑祺, 等. 全无机钙钛矿量子点的合成、性质及发光二极管应用进展 [J]. 发光学报, 2020, 41(2): 117-133. doi: 10.3788/fgxb20204102.0117http://dx.doi.org/10.3788/fgxb20204102.0117
LIU W Y, CHEN F, KONG S Q, et al. Synthesis, properties and application of all-inorganic perovskite quantum dots [J]. Chin. J. Lumin., 2020, 41(2): 117-133. (in Chinese). doi: 10.3788/fgxb20204102.0117http://dx.doi.org/10.3788/fgxb20204102.0117
刘鲲鹏, 刘德烨, 刘凤敏. 全无机钙钛矿太阳能电池湿度稳定性和光热稳定性研究进展 [J]. 发光学报, 2021, 42(4): 486-503. doi: 10.37188/CJL.20200343http://dx.doi.org/10.37188/CJL.20200343
LIU K P, LIU D Y, LIU F M. Research progress in humidity stability and light-thermal stability of all-inorganic perovskite solar cells [J]. Chin. J. Lumin., 2021, 42(4): 486-503. (in Chinese). doi: 10.37188/CJL.20200343http://dx.doi.org/10.37188/CJL.20200343
YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nat. Commun., 2015, 6(1): 8056-1-8. doi: 10.1038/ncomms9056http://dx.doi.org/10.1038/ncomms9056
XU Y Q, CHEN Q, ZHANG C F, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers [J]. J. Am. Chem. Soc., 2016, 138(11): 3761-3768. doi: 10.1021/jacs.5b12662http://dx.doi.org/10.1021/jacs.5b12662
DING J X, DU S J, ZUO Z Y, et al. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector [J]. J. Phys. Chem. C, 2017, 121(9): 4917-4923. doi: 10.1021/acs.jpcc.7b01171http://dx.doi.org/10.1021/acs.jpcc.7b01171
CLINCKEMALIE L, VALLI D, ROEFFAERS M B J, et al. Challenges and opportunities for CsPbBr3 perovskites in low- and high-energy radiation detection [J]. ACS Energy Lett., 2021, 6(4): 1290-1314. doi: 10.1021/acsenergylett.1c00007http://dx.doi.org/10.1021/acsenergylett.1c00007
FANG Y J, DONG Q F, SHAO Y C, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination [J]. Nat. Photonics, 2015, 9(10): 679-686. doi: 10.1038/nphoton.2015.156http://dx.doi.org/10.1038/nphoton.2015.156
杨洁, 皮明雨, 张丁可, 等.低维钙钛矿光电探测器研究进展 [J]. 发光学报, 2021, 42(6): 755-773. doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
YANG J, PI M Y, ZHANG D K, et al. Recent progress on low-dimensional perovskite photodetectors [J]. Chin. J. Lumin., 2021, 42(6): 755-773. (in Chinese). doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
QUAN L N, QUINTERO-BERMUDEZ R, VOZNYY O, et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix [J]. Adv. Mater., 2017, 29(21): 1605945. doi: 10.1002/adma.201605945http://dx.doi.org/10.1002/adma.201605945
ZHANG Q, SU R, LIU X F, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets [J]. Adv. Funct. Mater., 2016, 26(34): 6238-6245. doi: 10.1002/adfm.201601690http://dx.doi.org/10.1002/adfm.201601690
SONG J Z, CUI Q Z, LI J H, et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible‐ infrared dual-modal photodetectors [J]. Adv. Opt. Mater., 2017, 5(12): 1700157-1-8. doi: 10.1002/adom.201700157http://dx.doi.org/10.1002/adom.201700157
FU Y P, ZHU H M, STOUMPOS C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I) [J]. ACS Nano, 2016, 10(8): 7963-7972. doi: 10.1021/acsnano.6b03916http://dx.doi.org/10.1021/acsnano.6b03916
ZHANG C X, WANG S, LI X M, et al. Core/shell perovskite nanocrystals: synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications [J]. Adv. Funct. Mater., 2020, 30(31): 1910582-1-8. doi: 10.1002/adfm.201910582http://dx.doi.org/10.1002/adfm.201910582
CHEN JS, ŽÍDEK K, CHÁBERA P, et al. Size- and wavelength- dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots [J]. J. Phys. Chem. Lett., 2017, 8(10): 2316-2321. doi: 10.1021/acs.jpclett.7b00613http://dx.doi.org/10.1021/acs.jpclett.7b00613
WANG X X, ZHOU H, YUAN S P, et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing [J]. Nano Res., 2017, 10(10): 3385-3395. doi: 10.1007/s12274-017-1551-1http://dx.doi.org/10.1007/s12274-017-1551-1
WANG D, WU D, DONG D, et al. Polarized emission from CsPbX3 perovskite quantum dots [J]. Nanoscale, 2016, 8(22): 11565-11570. doi: 10.1039/c6nr01915chttp://dx.doi.org/10.1039/c6nr01915c
CLARK D J, STOUMPOS C C, SAOUMA F O, et al. Polarization-selective three-photon absorption and subsequent photoluminescence in CsPbBr3 single crystal at room temperature [J]. Phys. Rev. B, 2016, 93(19): 195202-1-8. doi: 10.1103/physrevb.93.195202http://dx.doi.org/10.1103/physrevb.93.195202
WANG K Y, JING L, YAO Q, et al. Highly in-plane polarization-sensitive photodetection in CsPbBr3 single crystal [J]. J. Phys. Chem. Lett., 2021, 12(7): 1904-1910. doi: 10.1021/acs.jpclett.1c00127http://dx.doi.org/10.1021/acs.jpclett.1c00127
WANG Y, LI X M, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals [J]. Nano Lett., 2016, 16(1): 448-453. doi: 10.1021/acs.nanolett.5b04110http://dx.doi.org/10.1021/acs.nanolett.5b04110
ZHOU Y, HU Z P, LI Y, et al. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser [J]. Appl. Phys. Lett., 2016, 108(26): 261108-1-4. doi: 10.1063/1.4955037http://dx.doi.org/10.1063/1.4955037
HE T C, LI J Z, QIU X, et al. Highly enhanced normalized-volume multiphoton absorption in CsPbBr3 2D nanoplates [J]. Adv. Opt. Mater., 2018, 6(21): 1800843-1-7. doi: 10.1002/adom.201800843http://dx.doi.org/10.1002/adom.201800843
SAOUMA F O, STOUMPOS C C, KANATZIDIS M G, et al. Multiphoton absorption order of CsPbBr3 as determined by wavelength-dependent nonlinear optical spectroscopy [J]. J. Phys. Chem. Lett., 2017, 8(19): 4912-4917. doi: 10.1021/acs.jpclett.7b02286http://dx.doi.org/10.1021/acs.jpclett.7b02286
ZHAO C Y, TIAN W M, LIU J X, et al. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals [J]. J. Phys. Chem. Lett., 2019, 10(10): 2357-2362. doi: 10.1021/acs.jpclett.9b00734http://dx.doi.org/10.1021/acs.jpclett.9b00734
CHO S, YANG Y, SOLJAČIĆ M, et al. Submicrometer perovskite plasmonic lasers at room temperature [J]. Sci. Adv., 2021, 7(35): eabf3362-1-12. doi: 10.1126/sciadv.abf3362http://dx.doi.org/10.1126/sciadv.abf3362
CHO S, YUN S H. Structure and optical properties of perovskite-embedded dual-phase microcrystals synthesized by sonochemistry [J]. Commun. Chem., 2020, 3(1): 15-1-7. doi: 10.1038/s42004-020-0265-6http://dx.doi.org/10.1038/s42004-020-0265-6
ABIEDH K, DHANABALAN B, KUTKAN S, et al. Surface-dependent properties and tunable photodetection of CsPbBr3 microcrystals grown on functional substrates [J]. Adv. Opt. Mater., 2022, 10(3): 2101807-1-9. doi: 10.1002/adom.202101807http://dx.doi.org/10.1002/adom.202101807
BU H, HE C L, XU Y Q, et al. Emerging new-generation detecting and sensing of metal halide perovskites [J]. Adv. Electron. Mater., 2022, 8(5): 2101204. doi: 10.1002/aelm.202101204http://dx.doi.org/10.1002/aelm.202101204
PENG Z X, YANG D D, YIN B Z, et al. Self-assembled ultrafine CsPbBr3 perovskite nanowires for polarized light detection [J]. Sci. China Mater., 2021, 64(9): 2261-2271. doi: 10.1007/s40843-020-1619-6http://dx.doi.org/10.1007/s40843-020-1619-6
ZHOU F, RAN X, FAN D Y, et al. Perovskites: multiphoton absorption and applications [J]. Adv. Opt. Mater., 2021, 9(23): 2100292. doi: 10.1002/adom.202100292http://dx.doi.org/10.1002/adom.202100292
LUO D Y, SU R, ZHANG W, et al.Minimizing non-radiative recombination losses in perovskite solar cells [J]. Nat. Rev. Mater., 2020, 5(1): 44-60. doi: 10.1038/s41578-019-0151-yhttp://dx.doi.org/10.1038/s41578-019-0151-y
ZHANG F, MI Z, HAO W Z, et al. Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices [J]. Sci. China Mater., 2022, 65(4): 855-875. doi: 10.1007/s40843-021-1906-5http://dx.doi.org/10.1007/s40843-021-1906-5
JIAO Y N, YI S H, WANG H W, et al. Strain engineering of metal halide perovskites on coupling anisotropic behaviors [J]. Adv. Funct. Mater., 2021, 31(4): 2006243-1-22. doi: 10.1002/adfm.202006243http://dx.doi.org/10.1002/adfm.202006243
XIAO G J, CAO Y, QI G Y, et al. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals [J]. J. Am. Chem. Soc., 2017, 139(29): 10087-10094. doi: 10.1021/jacs.7b05260http://dx.doi.org/10.1021/jacs.7b05260
KHMELEVSKAIA D, MARKINA D, TONKAEV P, et al. Excitonic versus free-carrier contributions to the nonlinearly excited photoluminescence in CsPbBr3 perovskites [J]. ACS Photonics, 2022, 9(1): 179-189. doi: 10.1021/acsphotonics.1c01347http://dx.doi.org/10.1021/acsphotonics.1c01347
HE Y H, SU R, HUANG Y Y, et al. High-order shift current induced terahertz emission from inorganic cesium bromine lead perovskite engendered by two-photon absorption [J]. Adv. Funct. Mater., 2019, 29(40): 1904694-1-9. doi: 10.1002/adfm.201904694http://dx.doi.org/10.1002/adfm.201904694
LIU S J, CHEN G X, HUANG Y Y, et al. Tunable fluorescence and optical nonlinearities of all inorganic colloidal cesium lead halide perovskite nanocrystals [J]. J. Alloys Compd., 2017, 724: 889-896. doi: 10.1016/j.jallcom.2017.06.034http://dx.doi.org/10.1016/j.jallcom.2017.06.034
KRISHNAKANTH K N, SETH S, SAMANTA A, et al. Broadband femtosecond nonlinear optical properties of CsPbBr3 perovskite nanocrystals [J]. Opt. Lett., 2018, 43(3): 603-606. doi: 10.1364/ol.43.000603http://dx.doi.org/10.1364/ol.43.000603
KETAVATH R, KATTURI N K, GHUGAL S G, et al. Deciphering the ultrafast nonlinear optical properties and dynamics of pristine and Ni-doped CsPbBr3 colloidal two-dimensional nanocrystals [J]. J. Phys. Chem. Lett., 2019, 10(18): 5577-5584. doi: 10.1021/acs.jpclett.9b02244http://dx.doi.org/10.1021/acs.jpclett.9b02244
ZHANG J, JIANG T, ZHENG X, et al. Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets [J]. Opt. Lett., 2017, 42(17): 3371-3374. doi: 10.1364/ol.42.003371http://dx.doi.org/10.1364/ol.42.003371
LI R X, WEI Z P, ZHAO H X, et al. Linear and nonlinear optical characteristics of all-inorganic perovskite CsPbBr3 quantum dots modified by hydrophobic zeolites [J]. Nanoscale, 2018, 10(48): 22766-22774. doi: 10.1039/c8nr07256fhttp://dx.doi.org/10.1039/c8nr07256f
WEI K, XU Z J, CHEN R Z, et al. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots [J]. Opt. Lett., 2016, 41(16): 3821-3824. doi: 10.1364/ol.41.003821http://dx.doi.org/10.1364/ol.41.003821
HAN Q J, WU W Z, LIU W L, et al. Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots [J]. Opt. Mater., 2018, 75: 880-886. doi: 10.1016/j.optmat.2017.12.006http://dx.doi.org/10.1016/j.optmat.2017.12.006
BADER T R, GOLD A. Polarization dependence of two-photon absorption in solids [J]. Phys. Rev., 1968, 171(3): 997-1003. doi: 10.1103/physrev.171.997http://dx.doi.org/10.1103/physrev.171.997
INOUE M, TOYOZAWA Y. Two-photon absorption and energy band structure [J]. J. Phys. Soc. Japan, 1965, 20(3): 363-374. doi: 10.1143/jpsj.20.363http://dx.doi.org/10.1143/jpsj.20.363
0
Views
875
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution