浏览全部资源
扫码关注微信
1.上海大学 材料科学与工程学院, 上海 200072
2.上海大学机电工程与自动化学院 新型显示技术及应用集成教育部重点实验室, 上海 200072
Published:05 June 2022,
Received:27 March 2022,
Revised:08 April 2022,
移动端阅览
李维光,陈俊聪,郑燕琼等.低沸点溶剂处理PEDOT∶PSS薄膜提升光伏电池性能[J].发光学报,2022,43(06):922-933.
LI Wei-guang,CHEN Jun-cong,ZHENG Yan-qiong,et al.Low Boiling-point Solvents Treatment of PEDOT∶PSS Film for Optimized Photovoltaic Cell Performance[J].Chinese Journal of Luminescence,2022,43(06):922-933.
李维光,陈俊聪,郑燕琼等.低沸点溶剂处理PEDOT∶PSS薄膜提升光伏电池性能[J].发光学报,2022,43(06):922-933. DOI: 10.37188/CJL.20220108.
LI Wei-guang,CHEN Jun-cong,ZHENG Yan-qiong,et al.Low Boiling-point Solvents Treatment of PEDOT∶PSS Film for Optimized Photovoltaic Cell Performance[J].Chinese Journal of Luminescence,2022,43(06):922-933. DOI: 10.37188/CJL.20220108.
聚(3,4-乙烯二氧噻吩)∶聚(苯乙烯磺酸盐)(PEDOT∶PSS)作为热门空穴传输材料之一,被广泛应用于各种光电子器件中。为提高其导电性,高沸点溶剂常常被直接添加到PEDOT∶PSS溶液中,然而这同时会造成溶剂残留,给器件带来明显的漏电流。而在以往的报道中,并未见有效利用更易去除的低沸点溶剂。在本工作中,我们发现使用异丙醇、乙醇和丙酮三种低沸点溶剂对PEDOT∶PSS薄膜进行先滴加后旋涂处理后,相应的P3HT∶PC
61
BM聚合物太阳能电池(PSCs)性能得到了改善。尤其在异丙醇处理后,电池短路电流密度从8.15 mA/cm
2
提高到9.17 mA/cm
2
,能量转换效率达到3.5%,相比参比器件提升了18.6%,同时未引起器件的漏电流增加。分析后发现处理后的PEDOT∶PSS薄膜中PEDOT链和PSS链发生相分离,表面形貌发生改变,透光能力和导电性得到增强。同时,通过溶剂处理尤其异丙醇处理后,PEDOT∶PSS的空穴传输能力显著上升。这些结果表明,低沸点溶剂可以通过这种方法被有效地利用,从而改善PEDOT∶PSS薄膜的光电性能。
As a popular hole transport material, poly(3,4-ethylenedioxythiophene)∶poly(styrene sulfonate)(PEDOT∶PSS) has been widely used in variety of optoelectronic devices. High boiling-point solvents were usually added into PEDOT∶PSS solutions to enhance its conductivity, but simultaneously resulted in evident leakage current due to solvent residue. However, low boiling-point solvents, which are more easily removed, have not been effectively utilized. In this study, we found that the performance of the corresponding poly(3-hexy-thiophene)(P3HT)∶[6,6]-phenyl-C
61
-butyric acid methyl ester(PC
61
BM) polymer solar cells(PSCs) was improved without increasing the leakage current after low boiling-point solvent treatment of PEDOT∶PSS films by dripping isopropanol, ethanol or acetone then spin-coating. Especially, after the isopropanol treatment, the short-circuit current density of PSC increased from 8.15 mA/cm
2
to 9.17 mA/cm
2
, and the power conversion efficiency reached 3.5%, an 18.6% enhancement compared to the control device. The analysis revealed that the solvent-treated PEDOT∶PSS films demonstrated diffetent surface morphology, enhanced light transmission, and improved electrical conductivity due to the phase separation between PEDOT and PSS chains. Meanwhile, the hole transport capability of PEDOT∶PSS increased after treatment, especially after the isopropanol treatment. These results suggested that low boiling-point solvents could be effectively utilized by this method and improved the optoelectronic properties of the PEDOT∶PSS film.
聚(3,4-乙烯二氧噻吩)∶聚(苯乙烯磺酸盐)低沸点溶剂溶剂处理聚合物太阳能电池
poly(3,4-ethylenedioxythiophene)∶poly(styrene sulfonate)(PEDOT∶PSS)low boiling-point solventssolvent treatmentpolymer solar cells
LU J X,FENG W J,MEI G D,et al. Ultrathin PEDOT∶PSS enables colorful and efficient perovskite light-emitting diodes [J]. Adv. Sci., 2020,7(11):2000689-1-7. doi: 10.1002/advs.202000689http://dx.doi.org/10.1002/advs.202000689
ALIKHAIDAROVA E,AFANASYEV D,IBRAYEV N,et al. Plasmonic enhanced polymer solar cell with inclusion of Ag@SiO2 core-shell nanostructures [J]. Polym. Adv. Technol., 2022,33(3):1000-1008. doi: 10.1002/pat.5574http://dx.doi.org/10.1002/pat.5574
SUN K,XIA Y J,OUYANG J Y. Improvement in the photovoltaic efficiency of polymer solar cells by treating the poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate) buffer layer with co-solvents of hydrophilic organic solvents and hydrophobic 1,2-dichlorobenzene [J]. Sol. Energy Mater. Sol. Cells, 2012,97:89-96. doi: 10.1016/j.solmat.2011.09.039http://dx.doi.org/10.1016/j.solmat.2011.09.039
SEFUNC M A,OKYAY A K,DEMIR H V. Plasmonic backcontact grating for P3HT∶PCBM organic solar cells enabling strong optical absorption increased in all polarizations [J]. Opt. Express, 2011,19(15):14200-14209. doi: 10.1364/oe.19.014200http://dx.doi.org/10.1364/oe.19.014200
HU X T,MENG X C,ZHANG L,et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells [J]. Joule, 2019,3(9):2205-2218. doi: 10.1016/j.joule.2019.06.011http://dx.doi.org/10.1016/j.joule.2019.06.011
FAN X,WEN R J,XIA Y G,et al. Vacuum-free,all-solution,and all-air processed organic photovoltaics with over 11% efficiency and promoted stability using layer-by-layer codoped polymeric electrodes [J]. Solar RRL, 2020,4(6):1900543-1-13. doi: 10.1002/solr.201900543http://dx.doi.org/10.1002/solr.201900543
FAN X,WANG J Z,WANG H B,et al. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT∶PSS electrodes on plastic substrates [J]. ACS Appl. Mater. Interfaces, 2015,7(30):16287-16295. doi: 10.1021/acsami.5b02830http://dx.doi.org/10.1021/acsami.5b02830
HA Y H,NIKOLOV N,POLLACK S K,et al. Towards a transparent,highly conductive poly(3,4-ethylenedioxythiophene) [J]. Adv. Funct. Mater., 2004,14(6):615-622. doi: 10.1002/adfm.200305059http://dx.doi.org/10.1002/adfm.200305059
JIANG Y Y,LIU T F,ZHOU Y H. Recent advances of synthesis,properties,film fabrication methods,modifications of poly(3,4-ethylenedioxythiophene),and applications in solution-processed photovoltaics [J]. Adv. Funct. Mater., 2020,30(51):2006213-1-46. doi: 10.1002/adfm.202006213http://dx.doi.org/10.1002/adfm.202006213
AIMUKHANOV A K,ROZHKOVA X S,ILYASSOV B R,et al. The influence of structural and charge transport properties of PEDOT∶PSS layers on the photovoltaic properties of polymer solar cells [J]. Polym. Adv. Technol., 2021,32(2):497-504. doi: 10.1002/pat.5102http://dx.doi.org/10.1002/pat.5102
HU L,SONG J X,YIN X X,et al. Research progress on polymer solar cells based on PEDOT∶PSS electrodes [J]. Polymers, 2020,12(1):145-1-19. doi: 10.3390/polym12010145http://dx.doi.org/10.3390/polym12010145
SHI H,LIU C C,JIANG Q L,et al. Effective approaches to improve the electrical conductivity of PEDOT∶PSS:a review [J]. Adv. Electron. Mater., 2015,1(4):1500017-1-16. doi: 10.1002/aelm.201500017http://dx.doi.org/10.1002/aelm.201500017
SONG C,ZHONG Z M,HU Z H,et al. The effect of solvent treatment on the buried PEDOT∶PSS layer [J]. Org. Electron., 2017,43:9-14. doi: 10.1016/j.orgel.2016.12.057http://dx.doi.org/10.1016/j.orgel.2016.12.057
KIM J Y,JUNG J H,LEE D E,et al. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents [J]. Synth. Met., 2002,126(2-3):311-316. doi: 10.1016/s0379-6779(01)00576-8http://dx.doi.org/10.1016/s0379-6779(01)00576-8
XIA Y J,OUYANG J Y. PEDOT∶PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells [J]. J. Mater. Chem., 2011,21(13):4927-4936. doi: 10.1039/C0JM04177Ghttp://dx.doi.org/10.1039/C0JM04177G
ZHENG Y Q,YU J L,TANG J,et al. Series of polar alcohol-additives assisted improvement in the PEDOT∶PSS film property and bulk-heterojunction organic solar cell performance [J]. J. Phys. D:Appl. Phys., 2019,52(25):255104-1-10. doi: 10.1088/1361-6463/ab04dchttp://dx.doi.org/10.1088/1361-6463/ab04dc
KIM W H,MÄKINEN A J,NIKOLOV N,et al. Molecular organic light-emitting diodes using highly conducting polymers as anodes [J]. Appl. Phys. Lett., 2002,80(20):3844-3846. doi: 10.1063/1.1480100http://dx.doi.org/10.1063/1.1480100
LI Q D,YANG J W,CHEN S S,et al. Highly conductive PEDOT∶PSS transparent hole transporting layer with solvent treatment for high performance silicon/organic hybrid solar cells [J]. Nanoscale Res. Lett., 2017,12(1):506-1-8. doi: 10.1186/s11671-017-2276-5http://dx.doi.org/10.1186/s11671-017-2276-5
ZHONG Q X,LIU J,CHEN S H,et al. Highly stable CsPbX3/PbSO4 core/shell nanocrystals synthesized by a simple post-treatment strategy [J]. Adv. Opt. Mater., 2021,9(5):2001763-1-7. doi: 10.1002/adom.202001763http://dx.doi.org/10.1002/adom.202001763
ZUO C T,DING L M. Drop-casting to make efficient perovskite solar cells under high humidity [J]. Angew. Chem. Int. Ed., 2021,60(20):11242-11246. doi: 10.1002/anie.202101868http://dx.doi.org/10.1002/anie.202101868
ZHU Z H,DENG W,LI W,et al. Antisolvent-induced fastly grown all-inorganic perovskite CsPbCl3 microcrystal films for high-sensitive UV photodetectors [J]. Adv. Mater. Interfaces, 2021,8(6):2001812-1-7. doi: 10.1002/admi.202001812http://dx.doi.org/10.1002/admi.202001812
HÖRMANN U,KRAUS J,GRUBER M,et al. Quantification of energy losses in organic solar cells from temperature-dependent device characteristics [J]. Phys. Rev. B, 2013,88(23):235307-1-13. doi: 10.1103/physrevb.88.235307http://dx.doi.org/10.1103/physrevb.88.235307
PENG B,GUO X,CUI C H,et al. Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate) buffer layer [J]. Appl. Phys. Lett., 2011,98(24):243308-1-3. doi: 10.1063/1.3600665http://dx.doi.org/10.1063/1.3600665
OUYANG J Y,XU Q F,CHU C W,et al. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene)∶poly(styrene sulfonate) film through solvent treatment [J]. Polymer, 2004,45(25):8443-8450. doi: 10.1016/j.polymer.2004.10.001http://dx.doi.org/10.1016/j.polymer.2004.10.001
CRISPIN X,JAKOBSSON F L E,CRISPIN A,et al. The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) plastic electrodes [J]. Chem. Mater., 2006,18(18):4354-4360. doi: 10.1021/cm061032+http://dx.doi.org/10.1021/cm061032+
KIM K J,KIM Y S,KANG W S,et al. Inspection of substrate-heated modified PEDOT∶PSS morphology for all spray deposited organic photovoltaics [J]. Sol. Energy Mater. Sol. Cells, 2010,94(7):1303-1306. doi: 10.1016/j.solmat.2010.03.013http://dx.doi.org/10.1016/j.solmat.2010.03.013
VAAGENSMITH B,REZA K M,HASAN N,et al. Environmentally friendly plasma-treated PEDOT∶PSS as electrodes for ITO-free perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2017,9(41):35861-35870. doi: 10.1021/acsami.7b10987http://dx.doi.org/10.1021/acsami.7b10987
LIU Y,CAI H K,CHU Y H,et al. Alcohol solvent treatment of PEDOT∶PSS hole transport layer for optimized inverted perovskite solar cells [J]. J. Mater. Sci.:Mater. Electron., 2020,31(15):12765-12774. doi: 10.1007/s10854-020-03828-3http://dx.doi.org/10.1007/s10854-020-03828-3
CASSIE A B D. Contact angles [J]. Discuss. Faraday Soc.,1948,3:11-16. doi: 10.1039/df9480300011http://dx.doi.org/10.1039/df9480300011
CASSIE A B D,BAXTER S. Wettability of porous surfaces [J]. Trans. Faraday Soc.,1944,40:546-551. doi: 10.1039/tf9444000546http://dx.doi.org/10.1039/tf9444000546
LIU Y,HE B L,DUAN J L,et al. Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr3 perovskite solar cells [J]. J. Mater. Chem. A, 2019,7(20):12635-12644. doi: 10.1039/c9ta01151jhttp://dx.doi.org/10.1039/c9ta01151j
SUNG S J,KIM J H,GIHM S H,et al. Revisiting the role of graphene quantum dots in ternary organic solar cells:insights into the nanostructure reconstruction and effective förster resonance energy transfer [J]. ACS Appl. Energy Mater., 2019,2(12):8826-8835. doi: 10.1021/acsaem.9b01793http://dx.doi.org/10.1021/acsaem.9b01793
JÖNSSON S K M,BIRGERSON J,CRISPIN X,et al. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films [J]. Synth. Met., 2003,139(1):1-10. doi: 10.1016/s0379-6779(02)01259-6http://dx.doi.org/10.1016/s0379-6779(02)01259-6
0
Views
223
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution