Effect of Crystal and Band/Electronic Structures on Luminescence Property of Ce3+ Doped Y-Si-O-N Luminescent Materials
Synthesis and Properties of Materials|更新时间:2022-08-01
|
Effect of Crystal and Band/Electronic Structures on Luminescence Property of Ce3+ Doped Y-Si-O-N Luminescent Materials
增强出版
Chinese Journal of LuminescenceVol. 43, Issue 7, Pages: 1061-1069(2022)
作者机构:
中国计量大学 光学与电子科技学院, 浙江 杭州 310018
作者简介:
基金信息:
the Preeminence Youth Science Funds of Zhejiang Province(LR19F050001);the National Key R&D Plan(2017YFB0403100;2017YFB0403105);the National Natural Science Foundation of China(62075203;51832005;12104431;51702339)
HU Xiang-yu,ZHU Qiang-qiang,ZHAI Yue,et al.Effect of Crystal and Band/Electronic Structures on Luminescence Property of Ce3+ Doped Y-Si-O-N Luminescent Materials[J].Chinese Journal of Luminescence,2022,43(07):1061-1069.
HU Xiang-yu,ZHU Qiang-qiang,ZHAI Yue,et al.Effect of Crystal and Band/Electronic Structures on Luminescence Property of Ce3+ Doped Y-Si-O-N Luminescent Materials[J].Chinese Journal of Luminescence,2022,43(07):1061-1069. DOI: 10.37188/CJL.20220105.
Effect of Crystal and Band/Electronic Structures on Luminescence Property of Ce3+ Doped Y-Si-O-N Luminescent Materials增强出版
Currently, the use of a blue LED chip in conjunction with the yellow-emitting YAG∶Ce
3+
phosphor is recognized as the main approach for achieving high-brightness white light. However, due to the spectrum defect of the long-wavelength component, this approach has resulted in a poor color rendering performance of LED lighting devices. Thus, the luminescent materials with long-wavelength emission(
>
600 nm) are very important for high quality LED lighting devices. In order to develop Ce
3+
doped luminescent materials with long-wavelength emission, the effect of coordination structure on the band/electronic structures of Ce
3+
needs to be further studied. In this paper, based on the first-principles calculation, the crystal and band/electronic structures of Y
2
Si
3
N
4
O
3
∶Ce
3+
, Y
4
Si
2
N
2
O
7
∶Ce
3+
, and Y
3
Si
5
N
9
O∶Ce
3+
luminescent materials in Y-Si-O-N system were studied by using the density-functional theory(DFT) of the generalized gradient approximation(GGA). To understand the relationship between band/electronic structures and the luminescence properties of Ce
3+
, the emission and excitation spectra of these luminescent materials were also studied. According to the research conclusions, the oxynitride structures with higher nitrogen content, shorter Ce—N bond lengths, and lower point symmetry coordination structure are suitable for the development of Ce
3+
doped luminescent materials willing to achieve long-wavelength emission.
关键词
LED照明显示Ce3+离子长波长发光第一性原理计算晶体结构能带/电子结构
Keywords
LED lightingCe3+ long-wavelength emissionfirst-principles calculationcrystal structureband/electronic structures
references
LI L Y,PENG M Y,VIANA B,et al. Unusual concentration induced antithermal quenching of the Bi2+ emission from Sr2P2O7∶Bi2+ [J]. Inorg. Chem., 2015,54(12):6028-6034. doi: 10.1021/acs.inorgchem.5b00887http://dx.doi.org/10.1021/acs.inorgchem.5b00887
OH J H,KANG H,EO Y J,et al. Synthesis of narrow-band red-emitting K2SiF6∶Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs [J]. J. Mater. Chem. C, 2015,3(3):607-615. doi: 10.1039/c4tc02042ahttp://dx.doi.org/10.1039/c4tc02042a
SCHMIECHEN S,STROBEL P,HECHT C,et al. Nitridomagnesosilicate Ba[Mg3SiN4]∶Eu2+ and structure-property relations of similar narrow-band red nitride phosphors [J]. Chem. Mater., 2015,27(5):1780-1785. doi: 10.1021/cm504604dhttp://dx.doi.org/10.1021/cm504604d
FU Z L,FU X H,SUN G J. Preparation and optical properties of red emitting phosphor CaSnO3∶Eu3+ for white LED [J]. Chin. J. Lumin., 2011,32(7):660-664.(in Chinese). doi: 10.3788/fgxb20113207.0660http://dx.doi.org/10.3788/fgxb20113207.0660
BAI X,CAPUTO G,HAO Z D,et al. Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs [J]. Nat. Commun., 2014,5(1):5702-1-8. doi: 10.1038/ncomms6702http://dx.doi.org/10.1038/ncomms6702
WANG L,ZHANG X,HAO Z D,et al. Enriching red emission of Y3Al5O12∶Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs [J]. Opt. Express, 2010,18(24):25177-25182. doi: 10.1364/oe.18.025177http://dx.doi.org/10.1364/oe.18.025177
LI Y Q,DELSING A C A,DE WITH G,et al. Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M= Ca,Sr,Ba):a promising class of novel LED conversion phosphors [J]. Chem. Mater., 2005,17(12):3242-3248. doi: 10.1021/cm050175dhttp://dx.doi.org/10.1021/cm050175d
LIDDELL K,THOMPSON D P. The crystal structure of Y3Si5N9O and revision of the compositions of some high nitrogen-containing M⁃Si⁃O⁃N (M= Y,La) phases [J]. J. Mater. Chem., 2001,11(2):507-512. doi: 10.1039/b006053ohttp://dx.doi.org/10.1039/b006053o
KIM D,JI C W,LEE J,et al. Highly luminous N3–-substituted Li2MSiO4-δN2/3δ∶Eu2+(M = Ca,Sr,and Ba) for white NUV light-emitting diodes [J]. ACS Omega, 2019,4(5):8431-8440. doi: 10.1021/acsomega.8b03489http://dx.doi.org/10.1021/acsomega.8b03489
XU H B,ZHUANG W D,WANG L,et al. Synthesis and photoluminescence properties of a blue-emitting La3Si8N11O4∶Eu2+ phosphor [J]. Inorg. Chem., 2017,56(22):14170-14177. doi: 10.1021/acs.inorgchem.7b02310http://dx.doi.org/10.1021/acs.inorgchem.7b02310
HIROSAKI N,XIE R J,KIMOTO K,et al. Characterization and properties of green-emitting β-SiAlON∶Eu2+ powder phosphors for white light-emitting diodes [J]. Appl. Phys. Lett., 2005,86(21):211905-1-3. doi: 10.1063/1.1935027http://dx.doi.org/10.1063/1.1935027
WANG L,WEI R,ZHENG P,et al. Realizing high-brightness and ultra-wide-color-gamut laser-driven backlighting by using laminated phosphor-in-glass (PiG) films [J]. J. Mater. Chem. C, 2020,8(5):1746-1754. doi: 10.1039/c9tc05807ahttp://dx.doi.org/10.1039/c9tc05807a
UHEDA K,HIROSAKI N,YAMAMOTO Y,et al. Luminescence properties of a red phosphor,CaAlSiN3∶Eu2+,for white light-emitting diodes [J]. Electrochem. Solid‐State Lett., 2006,9(4):H22-H25. doi: 10.1149/1.2173192http://dx.doi.org/10.1149/1.2173192
ZHU Q Q,WANG L,HIROSAKI N,et al. Extra-broad band orange‐emitting Ce3+‐doped Y3Si5N9O phosphor for solid-state lighting:electronic,crystal structures and luminescence properties [J]. Chem. Mater., 2016,28(13):4829-4839. doi: 10.1021/acs.chemmater.6b02109http://dx.doi.org/10.1021/acs.chemmater.6b02109
LU F C,CHEN X Y,WANG M W,et al. Crystal structure and photoluminescence of (Y1-xCex)2Si3O3N4 [J]. J. Lumin., 2011,131(2):336-341. doi: 10.1016/j.jlumin.2010.10.032http://dx.doi.org/10.1016/j.jlumin.2010.10.032
GENG D L,LI K,LIAN H Z,et al. Color-tunable luminescence of Y4Si2N2O7∶Ce3+,Tb3+,Dy3+ phosphors prepared by the soft-chemical ammonolysis method [J]. Eur. J. Inorg. Chem., 2014, 2014(11):1955-1964. doi: 10.1002/ejic.201400001http://dx.doi.org/10.1002/ejic.201400001
JIANG H. Band gaps from the Tran-Blaha modified Becke-Johnson approach:a systematic investigation [J]. J. Chem. Phys., 2013,138(13):134115-1-7. doi: 10.1063/1.4798706http://dx.doi.org/10.1063/1.4798706
KRESSE G,FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996,54(16):11169-11186. doi: 10.1103/physrevb.54.11169http://dx.doi.org/10.1103/physrevb.54.11169
ANISIMOV V I,ARYASETIAWAN F,LICHTENSTEIN A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA+ U method [J]. J. Phys.:Condens. Matter,1997,9(4):767-808. doi: 10.1088/0953-8984/9/4/002http://dx.doi.org/10.1088/0953-8984/9/4/002
MA Y Y,XIAO F,YE S,et al. Effects of Ce3+ and NH4Cl on structural and luminescent properties of Y2Si3O3N4∶Ce phosphors [J]. J. Electrochem. Soc., 2011,159(3):J39-J42. doi: 10.1149/2.002203jeshttp://dx.doi.org/10.1149/2.002203jes
HUANG M H,ZHU Q Q,MENG Y,et al. Synthesis and performance of La3Si6N11∶Ce3+ phosphor-in-glass films for laser lighting applications [J]. Chin. J. Lumin., 2021,42(10):1482-1492. (in Chinese). doi: 10.37188/cjl.20210076http://dx.doi.org/10.37188/cjl.20210076
HUANG X X,SUN J C,WEN J,et al. Site occupation and spectroscopic properties of Ce3+ in Y3Si5N9O from first-principles calculations [J]. J. Alloys Compd., 2018,730:57-61. doi: 10.1016/j.jallcom.2017.09.287http://dx.doi.org/10.1016/j.jallcom.2017.09.287
XU Y N,RULIS P,CHING W Y. Electronic structure and bonding in quaternary crystal Y3Si5N9O [J]. Phys. Rev. B, 2005,72(11):113101. doi: 10.1103/physrevb.72.113101http://dx.doi.org/10.1103/physrevb.72.113101
ZHU Q Q,HAO L Y,XU X,et al. A novel solid-state synthesis of long afterglow,Si‐N co‐doped,Y3Al5O12∶Ce3+ phosphor [J]. J. Lumin., 2016,172:270-274. doi: 10.1016/j.jlumin.2015.12.030http://dx.doi.org/10.1016/j.jlumin.2015.12.030
BIERNACKI S W,KAMIŃSKA A,SUCHOCKI A,et al. Nephelauxetic effect in LiNbO3∶Cr3+ crystals [J]. Appl. Phys. Lett., 2002,81(3):442-444. doi: 10.1063/1.1493225http://dx.doi.org/10.1063/1.1493225
SCHUH C D,HAENNI D,CRAIGIE E,et al. Long wavelength multiphoton excitation is advantageous for intravital kidney imaging [J]. Kidney Int., 2016,89(3):712-719. doi: 10.1038/ki.2015.323http://dx.doi.org/10.1038/ki.2015.323
CJL | Luminescent material structure and energy band engineering facilitate high quality solid state lighting
Related Articles
Near-infrared Luminescence of Li(Sc, M)Si2O6∶Cr3+(M = Ga3+/Lu3+/Y3+/Gd3+)
Multi-site Occupations and Energy Transfers of Rare-earth Ions
First-principles Calculations on Site Occupancy, Valence State and Luminescent Properties of Transition Metal Activators in Solids
Crystal Structure and Luminescent Properties of Ba2+ Modulated SrGe4-xO9∶xMn4+ Phosphors
Related Author
Xiang-yu HU
Qiang-qiang ZHU
Yue ZHAI
Hong ZHANG
Min-Hang UANG
Yao MENG
Le WANG
LU Ziwei
Related Institution
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences
School of Materials Science and Chemical Engineering, Ningbo University
State Key Laboratory of Rare Metals Separation and Comprehensive Utilization, Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences
Department of Physics, School of Physical Sciences, University of Science and Technology of China
CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China