National Natural Science Foundation of China(51902291);China Postdoctoral Science Foundation(2019M662524);Postdoctoral Research Sponsorship in Henan Province(19030025);Key R & D and promotion projects in Henan Province(212102210180);Hebei Key Laboratory of Dielectric and Electrolyte Functional Material, Northeastern University at Qinhuangdao(HKDEFM2021301);Young Talents Lifting Project from Henan Association for Science and Technology(2022HYTP016)
JI Hai-peng.Basic Knowledge for Understanding Spectroscopic Property of Mn4+ Ion[J].Chinese Journal of Luminescence,2022,43(08):1175-1187. DOI: 10.37188/CJL.20220102.
Basic Knowledge for Understanding Spectroscopic Property of Mn4+ Ion增强出版
By introducing the related basic knowledge, this paper provided a tutorial for understanding the optical property of Mn
4+
ion, including how to determine the LS term of a free Mn
4+
ion, and how to determine the splitting of these LS terms in an
O
h
point group,
etc
. Finally, this paper discussed how to analyze the photoluminescence spectra of Mn
4+
-doped phosphors, including how to determine the zero phonon line energy of each involved transitions, how to adjust the energy of the emitting photons,
etc
.
关键词
Mn4+发光光谱学
Keywords
Mn4+optical spectroscopy
references
BRIK M G, SRIVASTAVA A M. Critical review—a review of the electronic structure and optical properties of ions with d3 electron configuration (V2+, Cr3+, Mn4+, Fe5+) and main related misconceptions [J]. ECS J. Solid State Sci. Technol., 2017, 7(1): R3079-R3085. doi: 10.1149/2.0041801jsshttp://dx.doi.org/10.1149/2.0041801jss
BRIK M G, MA C G, SRIVASTAVA A M, et al. Mn4+ ions for solid state lighting [J]. Chin. J. Lumin., 2020, 41(9): 1011-1029. (in English). doi: 10.1016/j.jlumin.2019.116834http://dx.doi.org/10.1016/j.jlumin.2019.116834
BRIK M G, BEERS W W, COHEN W, et al. On the Mn4+ R-line emission intensity and its tunability in solids [J]. Opt. Mater., 2019, 91: 338-343. doi: 10.1016/j.optmat.2019.03.046http://dx.doi.org/10.1016/j.optmat.2019.03.046
ADACHI S. Review—Mn4+ vs Cr3+: a comparative study as activator ions in red and deep red-emitting phosphors [J]. ECS J. Solid State Sci. Technol., 2020, 9(2): 026003. doi: 10.1149/2162-8777/ab6ea6http://dx.doi.org/10.1149/2162-8777/ab6ea6
ADACHI S. Crystal-field and Racah parameters of Mn4+ ion in red and deep red-emitting phosphors: fluoride versus oxide phosphor [J]. J. Lumin., 2020, 218: 116829-1-9. doi: 10.1016/j.jlumin.2019.116829http://dx.doi.org/10.1016/j.jlumin.2019.116829
ADACHI S. Mn4+ and Cr3+ ions in red and deep red-emitting phosphors: spectral analysis and Racah parameter determination [J]. J. Lumin., 2020, 223: 117217-1-8. doi: 10.1016/j.jlumin.2020.117217http://dx.doi.org/10.1016/j.jlumin.2020.117217
WANG Z W, JI H P, XU J, et al.Advances in valence state analysis of manganese in Mn4+-activated red phosphors for white LEDs [J]. Chin. J. Lumin., 2020, 41(10): 1195-1213. (in Chinese). doi: 10.37188/CJL.20200178http://dx.doi.org/10.37188/CJL.20200178
YIN Z, XU Y Q. Inference of spectral term of three equal electrons by delete principle [J]. Coll. Phys.,2004, 23(7): 35-39. (in Chinese)
CHI N T K, TUAN N T, LIEN N T K, et al. Red emission of SrAl2O4∶Mn4+phosphor for warm white light-emitting diodes [J]. J. Electron. Mater.,2018, 47(8): 4571-4578. doi: 10.1007/s11664-018-6320-8http://dx.doi.org/10.1007/s11664-018-6320-8
WU J, LI Z Y, LUO L, et al. A facile two-step synthesis of an efficient narrow-band red-emitting K2NbF7∶Mn4+ phosphor for warm white LEDs and its thermal quenching behavior [J]. J. Alloys Compd., 2021, 863: 158058-1-8. doi: 10.1016/j.jallcom.2020.158058http://dx.doi.org/10.1016/j.jallcom.2020.158058
DENG T T, SONG E H, SU J, et al. Stable narrowband red emission in fluorotellurate KTeF5∶Mn4+ via Mn4+ noncentral-site occupation [J]. J. Mater. Chem. C, 2018, 6(16): 4418-4426. doi: 10.1039/c8tc00689jhttp://dx.doi.org/10.1039/c8tc00689j
FIGGIS B N, HITCHMAN M A. Ligand Field Theory and Its Applications [M]. New York: Wiley⁃VCH,1999.
TANABE Y, SUGANO S. On the absorption spectra of complex ions. I [J]. J. Phys. Soc. Japan, 1954, 9(5): 753-766. doi: 10.1143/jpsj.9.753http://dx.doi.org/10.1143/jpsj.9.753
MAI S W, ZHOU G D, LI W J. Advanced Structural Inorganic Chemistry [M]. 2nd ed. Beijing: Peking University Press, 2006. (inChinese)
JI H P, HOU X H, MOLOKEEV M S, et al. Ultrabroadband red luminescence of Mn4+ in MgAl2O4 peaking at 651 nm [J]. Dalton Trans.,2020, 49(17): 5711-5721. doi: 10.1039/d0dt00931hhttp://dx.doi.org/10.1039/d0dt00931h
ADACHI S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications:a review [J]. J. Lumin., 2018, 202: 263-281. doi: 10.1016/j.jlumin.2018.05.053http://dx.doi.org/10.1016/j.jlumin.2018.05.053
JI H P, ZHANG Z T, XU J, et al. Advance in red-emitting Mn4+-activated oxyfluoride phosphors [J]. J. Inorg. Mater., 2020, 35(8): 847-856. (in Chinese). doi: 10.15541/jim20190554http://dx.doi.org/10.15541/jim20190554
WANG Z W, JI H P, ZHANG Z T, et al. Solution growth of millimeter-scale Na2SiF6 single crystals for Mn4+-doping as red phosphor [J]. J. Am. Ceram. Soc., 2021, 104(10): 5077-5085. doi: 10.1111/jace.17739http://dx.doi.org/10.1111/jace.17739
JI H P, UEDA J, BRIK M G, et al. Intense deep-red zero phonon line emission of Mn4+ in double perovskite La4Ti3O12 [J]. Phys. Chem. Chem. Phys., 2019, 21(45): 25108-25117. doi: 10.1039/c9cp04007bhttp://dx.doi.org/10.1039/c9cp04007b
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M, et al. Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect [J]. ECS J. Solid State Sci. Technol., 2016, 5(1): R3067-R3077. doi: 10.1149/2.0091601jsshttp://dx.doi.org/10.1149/2.0091601jss
HU T, LIN H, CHENG Y, et al. A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn4+-activated oxyfluoride Na2WO2F4 [J]. J. Mater. Chem. C, 2017, 5(40): 10524-10532. doi: 10.1039/c7tc03655hhttp://dx.doi.org/10.1039/c7tc03655h
LI H, YANG Z F, LUO L J, et al. A red-emitting phosphor Ba2HfF8∶Mn4+ with a strengthened zero phonon line of Mn4+ for displays [J]. Opt. Mater., 2020, 107: 110091-1-6. doi: 10.1016/j.optmat.2020.110091http://dx.doi.org/10.1016/j.optmat.2020.110091
ARAI Y, ADACHI S. Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors [J]. J. Lumin., 2011, 131(12): 2652-2660. doi: 10.1016/j.jlumin.2011.06.042http://dx.doi.org/10.1016/j.jlumin.2011.06.042
ADACHI S. Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: a review [J]. J. Lumin., 2018, 197: 119-130. doi: 10.1016/j.jlumin.2018.01.016http://dx.doi.org/10.1016/j.jlumin.2018.01.016
ZHU H M, LIN C C, LUO W Q, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes [J]. Nat. Commun.,2014, 5(1): 4312-1-10. doi: 10.1038/ncomms5312http://dx.doi.org/10.1038/ncomms5312
FORREST I W, LANE A P. Single-crystal polarized infrared and Raman spectra and normal-coordinate analysis of some Group 4 complex hexafluorometalates [J]. Inorg. Chem., 1976, 15(2): 265-269. doi: 10.1021/ic50156a004http://dx.doi.org/10.1021/ic50156a004