浏览全部资源
扫码关注微信
1.天津中德应用技术大学 能源工程学院, 天津 300350
2.天津理工大学 材料科学与工程学院, 天津 300384
[ "王亚凌(1984-),女,河北邯郸人,博士,讲师,2018年于天津理工大学获得博士学位,主要从事有机太阳电池、钙钛矿太阳电池等新型光电材料与器件物理的研究。E-mail: wangyalingviolin@126.com" ]
[ "杨利营(1971-),男,河北石家庄人,博士,教授,博士生导师,2002年于天津大学获得博士学位,主要从事新型光电材料/储能材料的合成、新型光伏器件与储能器件制备的研究。E-mail: liyingyang@tjut.edu.cn" ]
Published:2022-05,
Received:21 March 2022,
Revised:30 March 2012,
移动端阅览
YA-LING WANG, LI-YING YANG, LAN LI, et al. A Simple Method to Enhance Performance of Inverted Planar Perovskite Solar Cells by Using PEDOT∶PSS Doped with DMSO as Hole Transport Layer. [J]. 发光学报, 2022, 43(5): 725-735.
YA-LING WANG, LI-YING YANG, LAN LI, et al. A Simple Method to Enhance Performance of Inverted Planar Perovskite Solar Cells by Using PEDOT∶PSS Doped with DMSO as Hole Transport Layer. [J]. 发光学报, 2022, 43(5): 725-735. DOI: 10.37188/CJL.20220096.
优化界面接触、增强界面处载流子传输对于提高钙钛矿电池性能具有重要意义。本研究将适量二甲基亚砜(DMSO)添加到聚(3,4-乙烯二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT∶PSS)空穴传输层中,改善了空穴传输层的导电性和空穴传输特性,有效提高了反式平面钙钛矿太阳能电池光伏性能。短路电流(
J
sc
)从21.29 mA/cm
2
提高到22.15 mA/cm
2
,填充因子(FF)从76.35%提高到80.09%,转换效率(PCE)从16.02%提高到17.01%。薄膜与器件性能综合测试结果表明,DMSO的掺入使PEDOT∶PSS发生适度相分离,形成更好的PEDOT导电通道,增强了PEDOT∶PSS的导电特性。稳态光致发光光谱呈现出显著的荧光猝灭效应,也表明掺杂 DMSO后PEDOT∶PSS的空穴提取能力得到提高,钙钛矿活性层与阳极之间的空穴传输更加顺畅,有助于实现高达 80%以上的填充因子。本研究为改善反式平面钙钛矿太阳电池或有机太阳电池光伏性能提供了一种高效、简便的方法,具有很好的现实意义。
In this work
the photovoltaic properties of inverted planar perovskite solar cells are promoted
via
a simple method by adding Dimethyl sulfoxide(DMSO) into Poly(3
4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT∶PSS) hole transport layer. Compared to the control device based on pristine PEDOT∶PSS
the device with DMSO doping shows different enhancement in short circuit current(
J
sc
)
fill factor(FF) and power conversion efficiency(PCE)
respectively. The
J
sc
is increased from 21.29 mA/cm
2
to 22.15 mA/cm
2
the FF is increased from 76.35% to 80.09%
and the PCE is increased from 16.02% to 17.01%
showing 4%
5% and 6% enhancement
respectively. A combination of characterizations has been utilized to systematically investigated the effect of DMSO doping on properties of PEDOT∶PSS and perovskite film. It can be found that the incorporation of DMSO leads to a moderate phase separation of PEDOT∶PSS
which causes the PEDOT component to form a better conductive channels
enhancing the conductivity and hole transport ability of PEDOT∶PSS. The steady-state photoluminescence spectra exhibit significant fluorescence quenching
indicating promoted hole extraction ability of PEDOT∶PSS after doping with DMSO. Thus
a more efficient hole transfer between the perovskite active layer and the anode is achieved
which contributes to the high fill factor above 80%. So that an effective and easy approach to improve the photovoltaic performance of inverted planar perovskite solar cells or organic solar cells is provided.
空穴传输层电导率钙钛矿太阳电池光伏性能
hole transport layerconductivityperovskite solar cellphotovoltaic performance
WANG Y L, DONG S J, MIAO Y, et al. BCP as additive for solution-processed PCBM electron transport layer in efficient planar heterojunction perovskite solar cells[J]. IEEE J. Photovolt., 2017, 7(2): 550-557.
妙亚, 董素娟, 刘少伟, 等. 在电子传输层中添加PVK提高钙钛矿太阳能电池的性能[J]. 发光学报, 2017, 38(9): 1210-1216.
MIAO Y, DONG S J, LIU S W, et al. Improving the performance of Inverted planar heterojunction perovskite solar cells via poly(n-vinylcarbazole) as additive in electron transporting layer[J]. Chin. J. Lumin., 2017, 38(9): 1210-1216. (in English)
李志成, 妙亚, 刘少伟, 等. PTCDI-C8作为阴极修饰层提高钙钛矿太阳能电池的性能[J]. 发光学报, 2018, 39(9): 1291-1296.
LI Z C, MIAO Y, LIU S W, et al. Performance improvement of planar heterojunction perovskite solar cells by using PTCDI-C8 as cathode buffer layer[J]. Chin. J. Lumin., 2018, 39(9): 1291-1296. (in English)
WANG Y L, LIU S W, ZENG Q, et al. Enhanced performance and stability of inverted planar perovskite solar cells by incorporating 1,6-diaminohexane dihydrochloride additive[J]. Sol. Energy Mater. Sol. Cells, 2018, 188: 140-148.
XU C Y, LIU Z H, LEE E C. Stability and efficiency improved perovskite solar cells through tuning the hydrophobicity of the hole transport layer with an organic semiconductor[J]. J. Mater. Chem. C, 2021, 9(2): 679-686.
MEHDIZADEH-RAD H, MEHDIZADEH-RAD F, ZHU F R, et al. Heat mitigation in perovskite solar cells:the role of grain boundaries[J]. Sol. Energy Mater. Sol. Cells, 2021, 220: 110837.
LI W, WANG H X, HU X F, et al. Sodium benzenesulfonate modified poly(3,4-ethylenedioxythiophene):polystyrene sulfonate with improved wettability and work function for efficient and stable perovskite solar cells[J]. Solar RRL, 2021, 5(1): 2000573-1-10.
TSENG Z L, CHIANG C H, WU C G. Highly stable FAxMA1-xPbI3-xBrx-2P precursor for crystalizing high-quality, large-area perovskite film in an ambient atmosphere[J]. Sol. RRL, 2019, 4(1): 1900402-1-9.
SUN X, ZHANG C F, CHANG J J, et al. Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement[J]. Nano Energy, 2016, 28: 417-425.
HEO J H, HAN H J, KIM D, et al. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy Environ. Sci., 2015, 8(5): 1602-1608.
HUANG P, LIU Y F, ZHANG K C, et al. Catechol derivatives as dopants in PEDOT∶PSS to improve the performance of p-i-n perovskite solar cells[J]. J. Mater. Chem. A, 2017, 5(46): 24275-24281.
ZHANG R, SHAO J Y, YU B C, et al. A new molecular material as a dopant-free hole-transporting layer for stable perovskite solar cells[J]. Mater. Chem. Front., 2021, 5(11): 4291-4299.
YIN X X, SONG Z N, LI Z F, et al. Toward ideal hole transport materials:a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells[J]. Energy Environ. Sci., 2020, 13(11): 4057-4086.
ZUO C T, DING L M. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive[J]. Nanoscale, 2014, 6(17): 9935-9938.
SONG X, WANG W W, SUN P, et al. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells[J]. Appl. Phys. Lett., 2015, 106(3): 033901-1-5.
LIU J, LIN J H, XUE Q F, et al. Growth and evolution of solution-processed CH3NH3PbI3-xClx layer for highly efficient planar-heterojunction perovskite solar cells[J]. J. Power Sources, 2016, 301: 242-250.
AKULA S B, SU C, TINGARE Y S, et al. Thieno-imidazole based small molecule hole transport materials for dopant-free, efficient inverted(p-i-n) perovskite solar cells[J]. J. Mater. Chem. C, 2020, 8(46): 16577-16583.
HAN W B, REN G H, LIU J M, et al. Recent progress of inverted perovskite solar cells with a modified PEDOT∶PSS hole transport layer[J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 49297-49322.
DABOCZI M, HAMILTON I, XU S D, et al. Origin of open-circuit voltage losses in perovskite solar cells investigated by surface photovoltage measurement[J]. ACS Appl. Mater. Interfaces, 2019, 11(50): 46808-46817.
QASURIA T A, FATIMA N, KARIMOV K S, et al. A novel and stable ultraviolet and infrared intensity sensor in impedance/capacitance modes fabricated from degraded CH3NH3PbI3-xClx perovskite materials[J]. J. Mater. Res. Technol., 2020, 9(6): 12795-12803.
JIANG M W, HU Z H, ONO L K, et al. CsPbBrxI3-x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes[J]. Nano Res., 2021, 14(1): 191-197.
FU Q Y, LI Y D, WANG X C, et al. The importance of the molecular weight of PEDOT hole transporting materials for efficient organic solar cells[J]. J. Mater. Chem. C, 2020, 8(48): 17185-17193.
RAMAN V, CHO Y H, PARK J H, et al. Impact of low temperature plasma annealing for flexible, transparent and conductive ITO/PEDOT∶PSS composite electrode[J]. J. Ind. Eng. Chem., 2021, 93: 423-429.
QASURIA T A, ALAM S, KARIMOV K S, et al. Stable perovskite based photodetector in impedance and capacitance mode[J]. Results Phys., 2019, 15: 102699.
REZA K M, MABROUK S, QIAO Q Q. A review on tailoring PEDOT∶PSS layer for improved performance of perovskite solar cells[J]. Proc. Nat. Res. Soc., 2018, 2(1): 02004-1-14.
PO R, CARBONERA C, BERNARDI A, et al. Polymer- and carbon-based electrodes for polymer solar cells:toward low-cost, continuous fabrication over large area[J]. Sol. Energy Mater. Sol. Cells, 2012, 100: 97-114.
GU Z W, ZUO L J, LARSEN-OLSEN T T, et al. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates[J]. J. Mater. Chem. A, 2015, 3(48): 24254-24260.
HUANG X, WANG K, YI C, et al. Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT∶PSS hole transport layer[J]. Adv. Energy Mater., 2016, 6(3): 1501773-1-8.
LEE I, KIM G W, YANG M Y, et al. Simultaneously enhancing the cohesion and electrical conductivity of PEDOT∶PSS conductive polymer films using DMSO additives[J]. ACS Appl. Mater. Interfaces, 2016, 8(1): 302-310.
LIU Y F, TAO Q Z, JIN Y Z, et al. Mo1.33C MXene-assisted PEDOT∶PSS hole transport layer for high-performance bulk-heterojunction polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2020, 2(1): 163-169.
WANG Y L, LIU S W, ZENG Q, et al. Controllable crystal film growth via appropriate substrate-preheating treatment for perovskite solar cells using mixed lead sources[J]. IEEE J. Photovolt., 2018, 8(1): 162-170.
KIM J R, JUNG J H, SHIN W S, et al. Efficient TCO-free organic solar cells with modified poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate) anodes[J]. J. Nanosci. Nanotechnol., 2011, 11(1): 326-330.
CHEN K, HU Q, LIU T H, et al. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells[J]. Adv. Mater., 2016, 28(48): 10718-10724.
ZHANG F L, GADISA A, INGANÄS O, et al. Influence of buffer layers on the performance of polymer solar cells[J]. Appl. Phys. Lett., 2004, 84(19): 3906-3908.
JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat. Mater., 2014, 13(9): 897-903.
WU Y Z, ISLAM A, YANG X D, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy Environ. Sci., 2014, 7(9): 2934-2938.
0
Views
240
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution