浏览全部资源
扫码关注微信
上海理工大学 材料与化学学院, 上海 200093
Published:05 June 2022,
Received:20 March 2022,
Revised:01 April 2022,
移动端阅览
刘丽,胡润泽,徐陈等.镧系Eu3+ 配合物修饰的分子印迹聚合物荧光探针制备及其对血红蛋白的传感检测[J].发光学报,2022,43(06):944-951.
LIU Li,HU Run-ze,XU Chen,et al.Preparation of Molecularly Imprinted Polymer Fluorescence Probe Modified by Lanthanide Eu3+ Complex and Hemoglobin Sensing Detection[J].Chinese Journal of Luminescence,2022,43(06):944-951.
刘丽,胡润泽,徐陈等.镧系Eu3+ 配合物修饰的分子印迹聚合物荧光探针制备及其对血红蛋白的传感检测[J].发光学报,2022,43(06):944-951. DOI: 10.37188/CJL.20220095.
LIU Li,HU Run-ze,XU Chen,et al.Preparation of Molecularly Imprinted Polymer Fluorescence Probe Modified by Lanthanide Eu3+ Complex and Hemoglobin Sensing Detection[J].Chinese Journal of Luminescence,2022,43(06):944-951. DOI: 10.37188/CJL.20220095.
采用溶胶凝胶法将分子印迹聚合物(MIPs)与镧系Eu
3+
配合物功能化的离子液体([Eu(BFA)
3
]@DPA‑PA)进行化学键合制备得到了基于镧系配合物修饰的分子印迹聚合物探针(Eu‑MIPs)。利用FT‑IR、XPS、UV‑Vis、PL等表征方法对探针分子的结构和性能进行分析。研究结果表明,Eu‑MIPs荧光聚合物具有优异的荧光性能。此外,通过进一步研究Eu‑MIPs对血红蛋白(Hb)的荧光传感性能发现,Hb能够对Eu‑MIPs的荧光产生明显的猝灭效果,这可能是由于Hb和离子液配体对紫外光具有竞争性吸收,进而使配体‑稀土之间的能量传递过程受到影响,从而造成Eu‑MIPs的荧光猝灭。同时,Eu‑MIPs对Hb具有较强的选择性和抗干扰能力,有望用作特异性检测Hb的荧光探针。
Molecularly imprinted polymer probes(Eu-MIPs) modified by lanthanide complexes were prepared by chemical bonding of molecularly imprinted polymers(MIPs) and lanthanide Eu
3+
complex-functionalized ionic liquid([Eu(BFA)
3
]@DPA-PA) by sol-gel method. The structure and properties of the probe molecules were analyzed by characterization methods such as FT-IR, XPS, UV-Vis, and PL. The results show that the Eu-MIPs fluorescent polymer has excellent fluorescence properties. In addition, by further studying the fluorescence sensing performance of Eu-MIPs for hemoglobin(Hb), it was found that Hb can produce a significant quenching effect on the fluorescence of Eu-MIPs, which may be due to the competitive absorption of UV light by Hb and ionic liquid ligands, and then the energy transfer process between ligands and rare earths is affected, resulting in the fluorescence quenching of Eu-MIPs. At the same time, Eu-MIPs have strong selectivity and anti-interference ability to Hb, and are expected to be used as fluorescent probes for the specific detection of Hb.
分子印迹镧系配合物荧光探针传感检测
molecularly imprinted polymerslanthanide complexesfluorescence probesensing detection
YANG X X,SUN J D,CUI F C,et al. An eco-friendly sensor based on CQD@MIPs for detection of N-acylated homoserine lactones and its 3D printing applications [J]. Talanta, 2020,219:121343. doi: 10.1016/j.talanta.2020.121343http://dx.doi.org/10.1016/j.talanta.2020.121343
REBELO P,COSTA-RAMA E,SEGURO I,et al. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis [J]. Biosens. Bioelectron., 2021,172:112719. doi: 10.1016/j.bios.2020.112719http://dx.doi.org/10.1016/j.bios.2020.112719
XIE X W,MA X G,GUO L H,et al. Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water [J]. Chem. Eng. J., 2019,357:56-65. doi: 10.1016/j.cej.2018.09.080http://dx.doi.org/10.1016/j.cej.2018.09.080
CHEN L X,XU S F,LI J H. Recent advances in molecular imprinting technology:current status,challenges and highlighted applications [J]. Chem. Soc. Rev., 2011,40(5):2922-2942. doi: 10.1039/c0cs00084ahttp://dx.doi.org/10.1039/c0cs00084a
武嘉,姜岚,张晓辉,等. 双单体分子印迹光子晶体凝胶膜检测双酚A [J]. 发光学报, 2014,35(1):119-124. doi: 10.3788/fgxb20143501.0119http://dx.doi.org/10.3788/fgxb20143501.0119
WU J,JIANG L,ZHANG X H,et al. Detection of bisphenol A with the double monomer molecularly imprinted photonic crystal hydrogel [J]. Chin. J. Lumin., 2014,35(1):119-124. (in Chinese). doi: 10.3788/fgxb20143501.0119http://dx.doi.org/10.3788/fgxb20143501.0119
LIU W,ZHANG M H,LIU X T,et al. Preparation of surface ion-imprinted materials based on modified chitosan for highly selective recognition and adsorption of nickel ions in aqueous solutions [J]. Ind. Eng. Chem. Res., 2020,59(13):6033-6042. doi: 10.1021/acs.iecr.9b04755http://dx.doi.org/10.1021/acs.iecr.9b04755
KUNO T,SO M,TAKAHASHI M,et al. U shape association of hemoglobin level with in-hospital mortality for COVID-19 patients [J]. J. Thrombosis Thrombolysis., 2022,53(1):113-117. doi: 10.1007/s11239-021-02516-1http://dx.doi.org/10.1007/s11239-021-02516-1
张红梅,王卿,邱静露,等. 桑色素与牛血红蛋白相互作用的光谱研究 [J]. 发光学报, 2007,28(4):566-572.
ZHANG H M,WANG Y Q,QIU J X,et al. Studies on the interaction between Morin and Bovine Hemoglobin(BHb) by spectroscopic methods [J]. Chin. J. Lumin., 2007,28(4):566-572. (in English)
ZHANG W,LIU W,LI P,et al. A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity [J]. Angew. Chem. Int. Ed., 2014,53(46):12489-12493. doi: 10.1002/anie.201405634http://dx.doi.org/10.1002/anie.201405634
KAN X W,ZHAO Q,SHAO D L,et al. Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers [J]. J. Phys. Chem. B, 2010,114(11):3999-4004. doi: 10.1021/jp910060chttp://dx.doi.org/10.1021/jp910060c
GAO R X,MU X R,HAO Y,et al. Combination of surface imprinting and immobilized template techniques for preparation of core⁃shell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin [J]. J. Mater. Chem. B, 2014,2(12):1733-1741. doi: 10.1039/c3tb21684ehttp://dx.doi.org/10.1039/c3tb21684e
LV P P,XIE D D,ZHANG Z H. Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin [J]. Talanta, 2018,188:145-151. doi: 10.1016/j.talanta.2018.05.068http://dx.doi.org/10.1016/j.talanta.2018.05.068
ZHANG K,ZHOU T C,KETTISEN K,et al. Chromatographic separation of hemoglobin variants using robust molecularly imprinted polymers [J]. Talanta, 2019,199:27-31. doi: 10.1016/j.talanta.2019.01.125http://dx.doi.org/10.1016/j.talanta.2019.01.125
LI P,LI H R. Recent progress in the lanthanide-complexes based luminescent hybrid materials [J]. Coordin. Chem. Rev., 2021,441:213988. doi: 10.1016/j.ccr.2021.213988http://dx.doi.org/10.1016/j.ccr.2021.213988
WANG Y G,LI P,WANG S F,et al. Recent progress in luminescent materials based on lanthanide complexes intercalated synthetic clays [J]. J. Rare Earths, 2019,37(5):451-467. doi: 10.1016/j.jre.2018.09.004http://dx.doi.org/10.1016/j.jre.2018.09.004
ZUO H Y,LI Y,LIAO Y Z. Europium ionic liquid grafted covalent organic framework with dual luminescence emissions as sensitive and selective acetone sensor [J]. ACS Appl. Mater. Interfaces, 2019,11(42):39201-39208. doi: 10.1021/acsami.9b14795http://dx.doi.org/10.1021/acsami.9b14795
李焕荣,王天任. 基于稀土配合物和离子液体的新型稀土发光材料研究进展 [J]. 发光学报, 2018,39(4):425-439. doi: 10.3788/fgxb20183904.0425http://dx.doi.org/10.3788/fgxb20183904.0425
LI H R,WANG T R. Research progress on the novel rare earth luminescent materials based on rare earth complexes and ionic liquids [J]. Chin. J. Lumin., 2018,39(4):425-439. (in Chinese). doi: 10.3788/fgxb20183904.0425http://dx.doi.org/10.3788/fgxb20183904.0425
CARLSON C A,LLOYD J A,DEAN S L,et al. Sensor for fluorene based on the incorporation of an environmentally sensitive fluorophore proximal to a molecularly imprinted binding site [J]. Anal. Chem., 2006,78(11):3537-3542. doi: 10.1021/ac051375bhttp://dx.doi.org/10.1021/ac051375b
LI J H,KENDIG C E,NESTEROV E E. Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials [J]. J. Am. Chem. Soc., 2007,129(51):15911-15918. doi: 10.1021/ja0748027http://dx.doi.org/10.1021/ja0748027
TU R Y,LIU B H,WANG Z Y,et al. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive [J]. Anal. Chem., 2008,80(9):3458-3465. doi: 10.1021/ac800060fhttp://dx.doi.org/10.1021/ac800060f
BOOKER K M,HOLDSWORTH C I,BOWYER M C,et al. Ionic liquids as porogens in the synthesis of molecularly imprinted polymers [M]. HANDY S. Applications of Ionic Liquids in Science and Technology. Rijeka, Croatia:InTech, 2011. doi: 10.1039/c4ob00547chttp://dx.doi.org/10.1039/c4ob00547c
BOOKER K,HOLDSWORTH C I,DOHERTY C M,et al. Ionic liquids as porogens for molecularly imprinted polymers:propranolol,a model study [J]. Org. Biomol. Chem., 2014,12(37):7201-7210. doi: 10.1039/c4ob00547chttp://dx.doi.org/10.1039/c4ob00547c
TANG P S,WEI X Z,ZHANG L Q,et al. Preparation and luminous performance of ternary complexes of rare earth europium (Ⅲ) [J]. Integr. Ferroelectr., 2021,218(1):43-49. doi: 10.1080/10584587.2021.1911325http://dx.doi.org/10.1080/10584587.2021.1911325
WU Y W,HAO H X,WU Q Y,et al. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of poly(ethylene-co-acrylic acid) and europium ions [J]. Opt. Mater., 2018,80:65-70. doi: 10.1016/j.optmat.2018.04.040http://dx.doi.org/10.1016/j.optmat.2018.04.040
DANG H X,LI Y,ZOU H,et al. Tunable white-light emission hybrids based on lanthanide complex functionalized poly(ionic liquid):assembly and chemical sensing [J]. Dyes Pigments, 2020,172:107804. doi: 10.1016/j.dyepig.2019.107804http://dx.doi.org/10.1016/j.dyepig.2019.107804
XU Q H,LI L S,LIU X S,et al. Incorporation of rare-earth complex Eu(TTA)4C5H5NC16H33 into surface-modified Si-MCM-41 and its photophysical properties [J]. Chem. Mater., 2002,14(2):549-555. doi: 10.1021/cm0102234http://dx.doi.org/10.1021/cm0102234
BALTRUS J P,KELLER M J. Rare earth oxides Eu2O3 and Nd2O3 analyzed by XPS [J]. Surf. Sci. Spectra, 2019,26(1):014001. doi: 10.1116/1.5085768http://dx.doi.org/10.1116/1.5085768
WANG Y T,CHEN L,YAN Y S,et al. Separation of adjacent heavy rare earth lutetium (Ⅲ) and ytterbium (Ⅲ) by task-specific ionic liquid cyphos IL 104 embedded polymer inclusion membrane [J]. J. Membrane Sci., 2020,610:118263. doi: 10.1016/j.memsci.2020.118263http://dx.doi.org/10.1016/j.memsci.2020.118263
LIU G Y,HUANG X D,LI L Y,et al. Recent advances and perspectives of molecularly imprinted polymer-based fluorescent sensors in food and environment analysis [J]. Nanomaterials, 2019,9(7):1030-1-19. doi: 10.3390/nano9071030http://dx.doi.org/10.3390/nano9071030
RICO-YUSTE A,ABOUHANY R,URRACA J L,et al. Eu(Ⅲ)-templated molecularly imprinted polymer used as a luminescent sensor for the determination of tenuazonic acid mycotoxin in food samples [J]. Sens. Actuators B:Chem., 2021,329:129256. doi: 10.1016/j.snb.2020.129256http://dx.doi.org/10.1016/j.snb.2020.129256
CHIEN H W,TSAI M T,YANG C H,et al. Interaction of LiYF4∶Yb3+/Er3+/Ho3+/Tm3+@LiYF4∶Yb3+ up conversion nanoparticles,molecularly imprinted polymers,and templates [J]. RSC Adv., 2020,10(59):35600-35610. doi: 10.1039/d0ra05771ahttp://dx.doi.org/10.1039/d0ra05771a
RAHMAN M L,PUAH P Y,SARJADI M S,et al. Ion-imprinted polymer for selective separation of cerium (Ⅲ) ions from rare earth mixture [J]. J. Nanosci. Nanotechnol., 2019,19(9):5796-5802. doi: 10.1166/jnn.2019.16538http://dx.doi.org/10.1166/jnn.2019.16538
SHEN S L,LONG Z R,LU Y,et al. Fluorescence detection of carbofuran in aqueous extracts based on dual-emission SiO2@Y2O3∶(Eu3+,Tb3+)@MIP core-shell structural nanoparticles [J]. Luminescence, 2022,37(2):348-356. doi: 10.1002/bio.4177http://dx.doi.org/10.1002/bio.4177
0
Views
184
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution