Temperature Sensing Properties in NaScF4∶Yb3+/Er3+ Nanoparticles
Synthesis and Properties of Materials|更新时间:2022-05-23
|
Temperature Sensing Properties in NaScF4∶Yb3+/Er3+ Nanoparticles
增强出版
Chinese Journal of LuminescenceVol. 43, Issue 5, Pages: 684-690(2022)
作者机构:
重庆邮电大学 理学院,重庆 400065
作者简介:
基金信息:
National Natural Science Foundation of China(11704054);Undergraduate Innovation and Entrepreneurship Training Plan Program of Chongqing University of Posts and Telecommunications(X202110617080)
GUO-TAO XIANG, MENG-LIN YANG, ZHEN LIU, et al. Temperature Sensing Properties in NaScF4∶Yb3+/Er3+ Nanoparticles. [J]. Chinese journal of luminescence, 2022, 43(5): 684-690.
DOI:
GUO-TAO XIANG, MENG-LIN YANG, ZHEN LIU, et al. Temperature Sensing Properties in NaScF4∶Yb3+/Er3+ Nanoparticles. [J]. Chinese journal of luminescence, 2022, 43(5): 684-690. DOI: 10.37188/CJL.20220064.
Temperature Sensing Properties in NaScF4∶Yb3+/Er3+ Nanoparticles增强出版
nanoparticles(NPs) with a size of about 35 nm are prepared by a solvothermal process. Under the excitation of 980 nm wavelength
the NPs exhibit strong red upconversion(UC) emission and weak green UC emission. The corresponding intensity ratio of red emission to green emission is approximately 6. Meanwhile
the green and near-infrared(NIR) emission of the UCNPs own excellent temperature sensing performances within the studied temperature range
which can be used for optical thermometry based on fluorescence intensity ratio(FIR) technology. The maximums of relative sensitivity
S
R
for thermally coupled
2
H
11/2
level and
4
S
3/2
level of Er
3+
and non-thermally coupled Yb
3+ 2
F
5/2
level and Er
3+ 4
I
13/2
level are 1.17%·K
-1
and 0.73%·K
-1
respectively. The results show that the UCNPs are a kind of high efficient red UC material and show promising temperature sensing performances in visible and NIR region.
GAO Y, CHENG Y, HU T, et al. Broadening the valid temperature range of optical thermometry through dual-mode design[J]. J. Mater. Chem. C, 2018, 6(41): 11178-11183.
LIANG S S, LI G G, DANG P P, et al. Cation substitution induced adjustment on lattice structure and photoluminescence properties of Mg14Ge5O24∶Mn4+:optimized emission for w-LED and thermometry applications[J]. Adv. Opt. Mater., 2019, 7(12): 1900093-1-15.
SHANG Y F, HAN Q, HAO S W, et al. Dual-mode upconversion nanoprobe enables broad-range thermometry from cryogenic to room temperature[J]. ACS Appl. Mater. Interfaces, 2019, 11(45): 42455-42461.
TREJGIS K, BEDNARKIEWICZ A, MARCINIAK L. Engineering excited state absorption based nanothermometry for temperature sensing and imaging[J]. Nanoscale, 2020, 12(7): 4667-4675.
ZHANG H, ZHAO S L, WANG X L, et al. The enhanced photoluminescence and temperature sensing performance in rare earth doped SrMoO4 phosphors by aliovalent doping:from material design to device applications[J]. J. Mater. Chem. C, 2019, 7(47): 15007-15013.
XU L F, LIU J Q, PEI L, et al. Enhanced up-conversion luminescence and optical temperature sensing in graphitic C3N4 quantum dots grafted with BaWO4∶Yb3+, Er3+ phosphors[J]. J. Mater. Chem. C, 2019, 7(20): 6112-6119.
KACZMAREK A M, KACZMAREK M K, VAN DEUN R. Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing[J]. Nanoscale, 2019, 11(3): 833-837.
WANG S X, MA S W, ZHANG G G, et al. High-performance Pr3+-doped scandate optical thermometry:200 K of sensing range with relative temperature sensitivity above 2%·K-1[J]. ACS Appl. Mater. Interfaces, 2019, 11(45): 42330-42338.
TU Y Y ZHAO S L, HE D Y, et al. A portable all-fiber thermometer based on the fluorescence intensity ratio(FIR) technique in rare earth doped TeO2-WO3-La2O3-Na2O glass[J]. J. Mater. Chem. C, 2018, 6(26): 7063-7069.
ZAREBA J K, NYK M, JANCZAK J, et al. Three-photon absorption of coordination polymer transforms UV-to-VIS thermometry into NIR-to-VIS thermometry[J]. ACS Appl. Mater. Interfaces, 2019, 11(11): 10435-10441.
WU Y F, SUO H, HE D, et al. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+ codoped NaLa-(MoO4)2 green phosphors[J]. Mater. Res. Bull., 2018, 106: 14-18.
SUO H, ZHAO X Q, ZHANG Z Y, et al. Upconverting LuVO4∶Nd3+/Yb3+/Er3+@SiO2@Cu2S hollow nanoplatforms for self-monitored photothermal ablation[J]. ACS Appl. Mater. Interfaces, 2018, 10(46): 39912-39920.
MENG Q Y, LIU T, DAI J Q, et al. Study on optical temperature sensing properties of YVO4∶Er3+, Yb3+ nanocrystals[J]. J. Lumin., 2016, 179: 633-638.
YUAN N, LIU D Y, YU X C, et al. A biological nano-thermometer based on ratiometric luminescent Er3+/Yb3+-codoped NaGd(WO4)2 nanocrystals[J]. Mater. Lett., 2018, 218: 337-340.
MENG M Z, ZHANG R, FA X M, et al. Effect of Ce3+ doping on upconversion luminescence of NaYF4∶Yb3+, Tm3+ nanoparticles and application of fluorescence temperature characteristics[J]. Chin. J. Lumin., 2021, 42(11): 1763-1773. (in Chinese)
JIN Y, LI K, LUO X, et al. Upconversion luminescence and temperature sensing properties for Sc2(WO4)3∶Er3+/Yb3+[J]. Chin. J. Lumin., 2021, 42(1): 91-97. (in Chinese)
ZHAO J Y, SUO H, LI L P, et al. Recent advances in rare-earth doped upconverison materials with thermally-enhanced emissions[J]. Chin. J. Lumin., 2021, 42(11): 1673-1685. (in Chinese)
XIANG G T, LIU X T, XIA Q, et al. Upconversion luminescence properties of β-NaYF4∶Yb3+/Er3+@β-NaYF4∶Yb3+[J]. Chin. J. Lumin., 2020, 41(6): 679-683. (in Chinese)
BARRETO J A, O’MALLEY W, KUBEIL M, et al. Nanomaterials:applications in cancer imaging and therapy[J]. Adv. Mater., 2011, 23(12): H18-H40.
JOHNSON N J J, KORINEK A, DONG C H, et al. Self-focusing by ostwald ripening:a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals[J]. J. Am. Chem. Soc., 2012, 134(27): 11068-11071.
LI Z Q, ZHANG Y, JIANG S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J]. Adv. Mater., 2008, 20(24): 4765-4769.
HUO L L, ZHOU J J, WU R Z, et al. Dual-functional β-NaYF4∶Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing[J]. Opt. Mater. Express, 2016, 6(4): 1056-1064.