浏览全部资源
扫码关注微信
1.东北林业大学 生物质材料科学与技术教育部重点实验室, 黑龙江 哈尔滨 150040
2.东北林业大学 理学院, 黑龙江 哈尔滨 150040
Published:05 June 2022,
Received:25 February 2022,
Revised:12 March 2022,
扫 描 看 全 文
王士鹏,董娅慧,赵浩然等.生物质基碳点制备及应用研究进展[J].发光学报,2022,43(06):833-850.
WANG Shi-peng,DONG Ya-hui,ZHAO Hao-ran,et al.Progress in Preparation and Application of Biomass-based Carbon Quantum Dots[J].Chinese Journal of Luminescence,2022,43(06):833-850.
王士鹏,董娅慧,赵浩然等.生物质基碳点制备及应用研究进展[J].发光学报,2022,43(06):833-850. DOI: 10.37188/CJL.20220063.
WANG Shi-peng,DONG Ya-hui,ZHAO Hao-ran,et al.Progress in Preparation and Application of Biomass-based Carbon Quantum Dots[J].Chinese Journal of Luminescence,2022,43(06):833-850. DOI: 10.37188/CJL.20220063.
碳点(CDs)作为一种新型的碳纳米荧光材料,因具有易制备、光学性能稳定、低毒和良好的生物相容性等优点而备受关注。然而,其荧光性能调控、荧光量子产率(QY)改善、寻求绿色环保和可持续发展的碳源仍是实现其多方面应用的关键。生物质材料在自然界中广泛存在、种类丰富且能够重复再生,在CDs制备过程中可同时控制碳核和表面态的形成,进而实现荧光性能调控和QY改善,作为来源广、廉价易得的碳源引起了科学家的广泛关注。本文从CDs的发光颜色调控出发对近年来生物质基CDs的绿色制备进行综述,分析归纳了不同生物质材料作为碳源及制备方法对生物质基CDs的发光颜色和QY的影响,梳理并总结了生物质基CDs在生物成像、药物递送、传感、防伪、光催化及LED等方面的应用研究进展,同时对生物质基CDs的性能优化、绿色制备方法面临的挑战及未来的发展方向进行了展望。
Carbon dots(CDs), as a novel carbon nanofluorescent material, has attracted much attention due to its advantages of easy preparation, stable optical properties, low toxicity and good biocompatibility. However, the regulation of fluorescence properties, the improvement of fluorescence quantum yield(QY) and the search for green and sustainable carbon source are the key to realize its multifaceted application. Biomass materials have attracted extensive attention of scientists due to being widely existed in nature, rich in variety and capable of repeated regeneration. In the process of CDs preparation, the formation of carbon nuclei and surface states can be controlled simultaneously, which result in regulating the fluorescence performance and improving QY. In this paper, the researches on the green synthesis of biomass derived CDs(B-CDs) based on the regulation of the emitting light colors in recent years are summarized. And the effect on the fluorescence color and QY is analyzed according to the selection of biomass carbon source and synthesis method. Furthermore, the applications of B-CDs in biological imaging, drug delivery, sensing, anti-counterfeiting, photocatalysis and LED are discussed. At the same time, the challenges and future development direction of B-CDs in the aspects of performance optimization and green synthesis method are also prospected.
生物质基碳点绿色合成光致发光量子效率生物应用
biomass derived carbon dotsgreen synthesisphotoluminescencequantum yieldbiomedical applications
孟维雪,杨柏,卢思宇. 从碳点到碳化聚合物点:发展和挑战 [J]. 发光学报, 2021,42(8):1075-1094. doi: 10.37188/CJL.20210155http://dx.doi.org/10.37188/CJL.20210155
MENG W W,YANG B,LU S Y. From carbon dots to carbonized polymer dots:development and challenges [J]. Chin. J. Lumin., 2021,42(8):1075-1904. (in Chinese). doi: 10.37188/CJL.20210155http://dx.doi.org/10.37188/CJL.20210155
张震,曲丹,安丽,等. 荧光碳点的制备、发光机理及应用 [J]. 发光学报, 2021,42(8):1125-1140. doi: 10.37188/CJL.20210061http://dx.doi.org/10.37188/CJL.20210061
ZHANG Z,QU D,AN L,et al. Preparation,luminescence mechanism and application of fluorescent carbon dots [J]. Chin. J. Lumin., 2021,42(8):1125-1140. (in Chinese). doi: 10.37188/CJL.20210061http://dx.doi.org/10.37188/CJL.20210061
AI L,YANG Y S,WANG B Y,et al. Insights into photoluminescence mechanisms of carbon dots:advances and perspectives [J]. Sci. Bull., 2021,66(8):839-856. doi: 10.1016/j.scib.2020.12.015http://dx.doi.org/10.1016/j.scib.2020.12.015
WAREING T C,GENTILE P,PHAN A N. Biomass-based carbon dots:current development and future perspectives [J]. ACS Nano, 2021,15(10):15471-15501. doi: 10.1021/acsnano.1c03886http://dx.doi.org/10.1021/acsnano.1c03886
徐冀健,曲丹,安丽,等. 红光/近红外发射碳点制备,光学调控与应用 [J]. 发光学报, 2021,42(12):1837-1851. doi: 10.37188/cjl.20210302http://dx.doi.org/10.37188/cjl.20210302
XU J J,QU D,AN L,et al. Preparation,optical control and application of red/near infrared emitting carbon dots [J]. Chin. J. Lumin., 2021,42(12):1837-1851. (in Chinese). doi: 10.37188/cjl.20210302http://dx.doi.org/10.37188/cjl.20210302
MENG W X,BAI X,WANG B Y,et al. Biomass‐derived carbon dots and their applications [J]. Energy Environ. Mater., 2019,2(3):172-192. doi: 10.1002/eem2.12038http://dx.doi.org/10.1002/eem2.12038
LIU S H,LIU Z C,LI Q F,et al. Facile synthesis of carbon dots from wheat straw for colorimetric and fluorescent detection of fluoride and cellular imaging [J]. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2021,246:118964-1-8. doi: 10.1016/j.saa.2020.118964http://dx.doi.org/10.1016/j.saa.2020.118964
MA H P,SUN C C,XUE G,et al. Facile synthesis of fluorescent carbon dots from Prunus cerasifera fruits for fluorescent ink,Fe3+ ion detection and cell imaging [J]. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2019,213:281-287. doi: 10.1016/j.saa.2019.01.079http://dx.doi.org/10.1016/j.saa.2019.01.079
XUE M Y,ZOU M B,ZHAO J J,et al. Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells [J]. J. Mater. Chem. B, 2015,3(33):6783-6789. doi: 10.1039/c5tb01073jhttp://dx.doi.org/10.1039/c5tb01073j
ZHONG D,MIAO H,YANG K C,et al. Carbon dots originated from carnation for fluorescent and colorimetric pH sensing [J]. Mater. Lett., 2016,166:89-92. doi: 10.1016/j.matlet.2015.12.061http://dx.doi.org/10.1016/j.matlet.2015.12.061
MIAO H,WANG L,ZHUO Y,et al. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice [J]. Biosens. Bioelectron., 2016,86:83-89. doi: 10.1016/j.bios.2016.06.043http://dx.doi.org/10.1016/j.bios.2016.06.043
LIU W,DIAO H P,CHANG H H,et al. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging [J]. Sens. Actuators B Chem., 2017,241:190-198. doi: 10.1016/j.snb.2016.10.068http://dx.doi.org/10.1016/j.snb.2016.10.068
ZHAO X,LIAO S,WANG L M,et al. Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion [J]. Talanta, 2019, 201:1-8. doi: 10.1016/j.talanta.2019.03.095http://dx.doi.org/10.1016/j.talanta.2019.03.095
ZHAO S Y,SONG X P,CHAI X Y,et al. Green production of fluorescent carbon quantum dots based on pine wood and its application in the detection of Fe3+ [J]. J. Cleaner Prod., 2020,263:121561-1-7. doi: 10.1016/j.jclepro.2020.121561http://dx.doi.org/10.1016/j.jclepro.2020.121561
WANG Q,LIU X,ZHANG L C,et al. Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application [J]. Analyst, 2012,137(22):5392-5397. doi: 10.1039/c2an36059dhttp://dx.doi.org/10.1039/c2an36059d
ZHANG Z H,SUN W H,WU P Y. Highly photoluminescent carbon dots derived from egg white:facile and green synthesis,photoluminescence properties,and multiple applications [J]. ACS Sustainable Chem. Eng., 2015,3(7):1412-1418. doi: 10.1021/acssuschemeng.5b00156http://dx.doi.org/10.1021/acssuschemeng.5b00156
JIA J,LIN B,GAO Y F,et al. Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging,Fe3+ sensing and cellular imaging [J]. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2019,211:363-372. doi: 10.1016/j.saa.2018.12.034http://dx.doi.org/10.1016/j.saa.2018.12.034
XUE M Y,ZHAN Z H,ZOU M B,et al. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging [J]. New J. Chem., 2016,40(2):1698-1703. doi: 10.1039/c5nj02181bhttp://dx.doi.org/10.1039/c5nj02181b
WANG L,ZHOU H S. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application [J]. Anal. Chem., 2014,86(18):8902-8905. doi: 10.1021/ac502646xhttp://dx.doi.org/10.1021/ac502646x
SANGAM S,GUPTA A,SHAKEEL A,et al. Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond [J]. Green Chem., 2018, 20(18):4245-4259. doi: 10.1039/c8gc01638khttp://dx.doi.org/10.1039/c8gc01638k
SUN D,LIU T T,WANG C F,et al. Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine [J]. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2020,240:118598-1-8. doi: 10.1016/j.saa.2020.118598http://dx.doi.org/10.1016/j.saa.2020.118598
SHI C,QI H J,MA R X,et al. N,S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells [J]. Mater. Sci. Eng. C, 2019,105:110132-1-8. doi: 10.1016/j.msec.2019.110132http://dx.doi.org/10.1016/j.msec.2019.110132
LIU R L,ZHANG J,GAO M P,et al. A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers [J]. RSC Adv., 2015,5(6):4428-4433. doi: 10.1039/c4ra12077ahttp://dx.doi.org/10.1039/c4ra12077a
LIU S,TIAN J Q,WANG L,et al. Hydrothermal treatment of grass:a low‐cost,green route to nitrogen‐doped,carbon‐rich,photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (Ⅱ) ions [J]. Adv. Mater., 2012,24(15):2037-2041. doi: 10.1002/adma.201200164http://dx.doi.org/10.1002/adma.201200164
HUO X Z,HE Y X,MA S Q,et al. Green synthesis of carbon dots from grapefruit and its fluorescence enhancement [J]. J. Nanomater., 2020, 2020:8601307-1-7. doi: 10.1155/2020/8601307http://dx.doi.org/10.1155/2020/8601307
QU Y Y,YU L Y,ZHU B Y,et al. Green synthesis of carbon dots by celery leaves for use as fluorescent paper sensors for the detection of nitrophenols [J]. New J. Chem., 2020,44(4):1500-1507. doi: 10.1039/c9nj05285bhttp://dx.doi.org/10.1039/c9nj05285b
DONG G H,LANG K,OUYANG H,et al. Facile synthesis of N,P-doped carbon dots from maize starch via a solvothermal approach for the highly sensitive detection of Fe3+ [J]. RSC Adv., 2020,10(55):33483-33489. doi: 10.1039/d0ra06209jhttp://dx.doi.org/10.1039/d0ra06209j
XU Y,FAN Y,ZHANG L,et al. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples [J]. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2019,220:117109-1-14. doi: 10.1016/j.saa.2019.05.014http://dx.doi.org/10.1016/j.saa.2019.05.014
SURYAWANSHI A,BISWAL M,MHAMANE D,et al. Large scale synthesis of graphene quantum dots(GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions [J]. Nanoscale, 2014,6(20):11664-11670. doi: 10.1039/c4nr02494jhttp://dx.doi.org/10.1039/c4nr02494j
SAHU S,BEHERA B,MAITI T K,et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents [J]. Chem. Commun., 2012,48(70):8835-8837. doi: 10.1039/c2cc33796ghttp://dx.doi.org/10.1039/c2cc33796g
VANDARKUZHALI S A A,JEYALAKSHMI V,SIVARAMAN G,et al. Highly fluorescent carbon dots from pseudo-stem of banana plant:applications as nanosensor and bio-imaging agents [J]. Sens. Actuators B Chem., 2017,252:894-900. doi: 10.1016/j.snb.2017.06.088http://dx.doi.org/10.1016/j.snb.2017.06.088
HU X T,SHI J Y,SHI Y Q,et al. A dual-mode sensor for colorimetric and fluorescent detection of nitrite in hams based on carbon dots-neutral red system [J]. Meat Sci., 2019,147:127-134. doi: 10.1016/j.meatsci.2018.09.006http://dx.doi.org/10.1016/j.meatsci.2018.09.006
HU X T,LI Y X,XU Y W,et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk [J]. Food Chem., 2021,339:127775-1-8. doi: 10.1016/j.foodchem.2020.127775http://dx.doi.org/10.1016/j.foodchem.2020.127775
WANG Y,LIU Y S,ZHOU J,et al. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from lignin for formaldehyde determination [J]. RSC Adv., 2021,11(47):29178-29185. doi: 10.1039/d1ra05370ahttp://dx.doi.org/10.1039/d1ra05370a
LI L P,ZHANG R P,LU C X,et al. In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications [J]. J. Mater. Chem. B, 2017,5(35):7328-7334. doi: 10.1039/c7tb00634ahttp://dx.doi.org/10.1039/c7tb00634a
CUI Y,LIU R J,YE F G,et al. Single-excitation,dual-emission biomass quantum dots:preparation and application for ratiometric fluorescence imaging of coenzyme A in living cells [J]. Nanoscale, 2019,11(19):9270-9275. doi: 10.1039/c9nr01809chttp://dx.doi.org/10.1039/c9nr01809c
KUMAWAT M K,THAKUR M,GURUNG R B,et al. Graphene quantum dots from Mangifera indica:application in near-infrared bioimaging and intracellular nanothermometry [J]. ACS Sustainable Chem. Eng., 2017,5(2):1382-1391. doi: 10.1021/acssuschemeng.6b01893http://dx.doi.org/10.1021/acssuschemeng.6b01893
DING H,JI Y,WEI J S,et al. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging [J]. J. Mater. Chem. B, 2017,5(26):5272-5277. doi: 10.1039/c7tb01130jhttp://dx.doi.org/10.1039/c7tb01130j
GUPTA D A,DESAI M L,MALEK N I,et al. Fluorescence detection of Fe3+ ion using ultra-small fluorescent carbon dots derived from pineapple(Ananas comosus):development of miniaturized analytical method [J]. J. Mol. Struct., 2020,1216:128343-1-7. doi: 10.1016/j.molstruc.2020.128343http://dx.doi.org/10.1016/j.molstruc.2020.128343
WANG G,GUO Q L,CHEN D,et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian [J]. ACS Appl. Mater. Interfaces, 2018,10(6):5750-5759. doi: 10.1021/acsami.7b16002http://dx.doi.org/10.1021/acsami.7b16002
PAL T,MOHIYUDDIN S,PACKIRISAMY G. Correction to “facile and green synthesis of multicolor fluorescence carbon dots from curcumin:in vitro and in vivo bioimaging and other applications” [J]. ACS Omega, 2018,3(5):5887-1-1. doi: 10.1021/acsomega.8b00956http://dx.doi.org/10.1021/acsomega.8b00956
MENG W X,WANG B Y,AI L,et al. Engineering white light-emitting diodes with high color rendering index from biomass carbonized polymer dots [J]. J. Colloid Interface Sci., 2021,598:274-282. doi: 10.1016/j.jcis.2021.04.022http://dx.doi.org/10.1016/j.jcis.2021.04.022
JIANG K,ZHANG L,LU J F,et al. Triple-mode emission of carbon dots:applications for advanced anti-counterfeiting [J]. Angew. Chem., 2016,128(25):7347-7351. doi: 10.1002/ange.201602445http://dx.doi.org/10.1002/ange.201602445
SUN Y L,LIU J K,PANG X L,et al. Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica [J]. J. Mater. Chem. C, 2020,8(17):5744-5751. doi: 10.1039/d0tc00507jhttp://dx.doi.org/10.1039/d0tc00507j
LI W,ZHOU W,ZHOU Z S,et al. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix [J]. Angew. Chem., 2019,131(22):7356-7361. doi: 10.1002/ange.201814629http://dx.doi.org/10.1002/ange.201814629
LIN C J,ZHUANG Y X,LI W H,et al. Blue,green,and red full-color ultralong afterglow in nitrogen-doped carbon dots [J]. Nanoscale, 2019,11(14):6584-6590. doi: 10.1039/c8nr09672dhttp://dx.doi.org/10.1039/c8nr09672d
WANG P,ZHENG D X,LIU S X,et al. Producing long afterglow by cellulose confinement effect:a wood-inspired design for sustainable phosphorescent materials [J]. Carbon, 2021,171:946-952. doi: 10.1016/j.carbon.2020.09.060http://dx.doi.org/10.1016/j.carbon.2020.09.060
ZHAI Y X,WANG P,ZHANG X Y,et al. Carbon dots confined in 3D polymer network:producing robust room temperature phosphorescence with tunable lifetimes [J]. Chin. Chem. Lett., 2021,33(2):783-787. doi: 10.1016/j.cclet.2021.08.075http://dx.doi.org/10.1016/j.cclet.2021.08.075
SUN Y Q,LIU S T,SUN L Y,et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design [J]. Nat. Commun., 2020,11(1):5591-1-11. doi: 10.1038/s41467-020-19422-4http://dx.doi.org/10.1038/s41467-020-19422-4
CAO L,WANG X,MEZIANI M J,et al. Carbon dots for multiphoton bioimaging [J]. J. Am. Chem. Soc., 2007,129(37):11318-11319. doi: 10.1021/ja073527lhttp://dx.doi.org/10.1021/ja073527l
ZHANG X Y,JIANG M Y,NIU N,et al. Natural-product-derived carbon dots:from natural products to functional materials [J]. ChemSusChem, 2018,11(1):11-24. doi: 10.1002/cssc.201701847http://dx.doi.org/10.1002/cssc.201701847
RUAN S,ZHU B,ZHANG H,et al. A simple one-step method for preparation of fluorescent carbon nanospheres and the potential application in cell organelles imaging [J]. J. Colloid Interface Sci., 2014,422:25-29. doi: 10.1016/j.jcis.2014.02.006http://dx.doi.org/10.1016/j.jcis.2014.02.006
CHENG C G,SHI Y N,LI M,et al. Carbon quantum dots from carbonized walnut shells:structural evolution,fluorescence characteristics,and intracellular bioimaging [J]. Mater. Sci. Eng. C, 2017,79:473-480. doi: 10.1016/j.msec.2017.05.094http://dx.doi.org/10.1016/j.msec.2017.05.094
SHI L H,LI Y Y,LI X F,et al. Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging,patterning and staining [J]. Nanoscale, 2015,7(16):7394-7401. doi: 10.1039/c5nr00783fhttp://dx.doi.org/10.1039/c5nr00783f
AMIN N,AFKHAMI A,HOSSEINZADEH L,et al. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of Zoledronic acid drug in human serum and cellular imaging [J]. Anal. Chim. Acta, 2018,1030:183-193. doi: 10.1016/j.aca.2018.05.014http://dx.doi.org/10.1016/j.aca.2018.05.014
LI Y B,BAI G X,ZENG S J,et al. Theranostic carbon dots with innovative NIR-Ⅱ emission for in vivo renal-excreted optical imaging and photothermal therapy [J]. ACS Appl. Mater. Interfaces, 2019,11(5):4737-4744. doi: 10.1021/acsami.8b14877http://dx.doi.org/10.1021/acsami.8b14877
LIU J J,GENG Y J,LI D W,et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum [J]. Adv. Mater., 2020,32(17):1906641-1-9. doi: 10.1002/adma.201906641http://dx.doi.org/10.1002/adma.201906641
ATCHUDAN R,EDISON T N J I,SHANMUGAM M,et al. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging [J]. Phys. E Low Dimens. Syst. Nanostruct., 2021,126:114417-1-8. doi: 10.1016/j.physe.2020.114417http://dx.doi.org/10.1016/j.physe.2020.114417
KIM K W,CHOI T Y,KWON Y M,et al. Simple synthesis of photoluminescent carbon dots from a marine polysaccharide found in shark cartilage [J]. Electron. J. Biotechnol., 2020,47:36-42. doi: 10.1016/j.ejbt.2020.07.003http://dx.doi.org/10.1016/j.ejbt.2020.07.003
LI W,WU S S,XU X K,et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature [J]. Chem. Mater., 2019,31(23):9887-9894. doi: 10.1021/acs.chemmater.9b04120http://dx.doi.org/10.1021/acs.chemmater.9b04120
YUAN Y F,GUO B,HAO L Y,et al. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy [J]. Colloids Surf. B Biointerf., 2017,159:349-359. doi: 10.1016/j.colsurfb.2017.07.030http://dx.doi.org/10.1016/j.colsurfb.2017.07.030
BAYDA S,HADLA M,PALAZZOLO S,et al. Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy [J]. J. Controlled Release, 2017,248:144-152. doi: 10.1016/j.jconrel.2017.01.022http://dx.doi.org/10.1016/j.jconrel.2017.01.022
D'SOUZA S L,DESHMUKH B,BHAMORE J R,et al. Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system [J]. RSC Adv., 2016,6(15):12169-12179. doi: 10.1039/c5ra24621khttp://dx.doi.org/10.1039/c5ra24621k
HU Y F,ZHAO J J,LI X F,et al. Biomass-based quantum dots co-doped with sulfur and nitrogen for highly sensitive detection of thrombin and its inhibitor [J]. New J. Chem., 2019,43(29):11510-11516. doi: 10.1039/c9nj02359chttp://dx.doi.org/10.1039/c9nj02359c
LIU W,DING F,WANG Y Y,et al. A dual-readout nanosensor based on biomass-based C-dots and chitosan@AuNPs with hyaluronic acid for determination of hyaluronidase [J]. Luminescence, 2020,35(1):43-51. doi: 10.1002/bio.3699http://dx.doi.org/10.1002/bio.3699
WANG L,BI Y D,HOU J,et al. Facile,green and clean one-step synthesis of carbon dots from wool:application as a sensor for glyphosate detection based on the inner filter effect [J]. Talanta, 2016,160:268-275. doi: 10.1016/j.talanta.2016.07.020http://dx.doi.org/10.1016/j.talanta.2016.07.020
FENG Y J,ZHONG D,MIAO H,et al. Carbon dots derived from rose flowers for tetracycline sensing [J]. Talanta, 2015,140:128-133. doi: 10.1016/j.talanta.2015.03.038http://dx.doi.org/10.1016/j.talanta.2015.03.038
HUMAERA N A,FAHRI A N,ARMYNAH B,et al. Natural source of carbon dots from part of a plant and its applications:a review [J]. Luminescence, 2021,36(6):1354-1364. doi: 10.1002/bio.4084http://dx.doi.org/10.1002/bio.4084
DESAI M L,JHA S,BASU H,et al. Acid oxidation of muskmelon fruit for the fabrication of carbon dots with specific emission colors for recognition of Hg2+ ions and cell imaging [J]. ACS Omega, 2019,4(21):19332-19340. doi: 10.1021/acsomega.9b02730http://dx.doi.org/10.1021/acsomega.9b02730
ZHU L L,SHEN D K,LIU Q,et al. Sustainable synthesis of bright green fluorescent carbon quantum dots from lignin for highly sensitive detection of Fe3+ ions [J]. Appl. Surf. Sci., 2021,565:150526-1-8. doi: 10.1016/j.apsusc.2021.150526http://dx.doi.org/10.1016/j.apsusc.2021.150526
QIU Y,GAO D,YIN H G,et al. Facile,green and energy-efficient preparation of fluorescent carbon dots from processed traditional Chinese medicine and their applications for on-site semi-quantitative visual detection of Cr(Ⅵ) [J]. Sens. Actuators B Chem., 2020,324:128722-1-10. doi: 10.1016/j.snb.2020.128722http://dx.doi.org/10.1016/j.snb.2020.128722
BHAMORE J R,JHA S,SINGHAL R K,et al. Facile green synthesis of carbon dots from Pyrus pyrifolia fruit for assaying of Al3+ ion via chelation enhanced fluorescence mechanism [J]. J. Mol. Liq., 2018,264:9-16. doi: 10.1016/j.molliq.2018.05.041http://dx.doi.org/10.1016/j.molliq.2018.05.041
LIAO J,CHENG Z H,ZHOU L. Nitrogen-doping enhanced fluorescent carbon dots:green synthesis and their applications for bioimaging and label-free detection of Au3+ ions [J]. ACS Sustainable Chem. Eng., 2016,4(6):3053-3061. doi: 10.1021/acssuschemeng.6b00018http://dx.doi.org/10.1021/acssuschemeng.6b00018
QIANG R B,YANG S R,HOU K M,et al. Synthesis of carbon quantum dots with green luminescence from potato starch [J]. New J. Chem., 2019,43(27):10826-10833. doi: 10.1039/c9nj02291khttp://dx.doi.org/10.1039/c9nj02291k
JIN H,GUI R J,WANG Y F,et al. Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids [J]. Talanta, 2017,169:141-148. doi: 10.1016/j.talanta.2017.03.083http://dx.doi.org/10.1016/j.talanta.2017.03.083
XU J Y,ZHOU Y,CHENG G F,et al. Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties [J]. Luminescence, 2015,30(4):411-415. doi: 10.1002/bio.2752http://dx.doi.org/10.1002/bio.2752
ZHANG H M,KANG S H,WANG G Z,et al. Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores [J]. ACS Sens., 2016,1(7):875-881. doi: 10.1021/acssensors.6b00269http://dx.doi.org/10.1021/acssensors.6b00269
ATCHUDAN R,EDISON T N J I,PERUMAL S,et al. Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications [J]. J. Mol. Liq., 2019,296:111817-1-10. doi: 10.1016/j.molliq.2019.111817http://dx.doi.org/10.1016/j.molliq.2019.111817
ENSAFI A A,SEFAT S H,KAZEMIFARD N,et al. A novel one-step and green synthesis of highly fluorescent carbon dots from saffron for cell imaging and sensing of prilocaine [J]. Sens. Actuators B Chem., 2017,253:451-460. doi: 10.1016/j.snb.2017.06.163http://dx.doi.org/10.1016/j.snb.2017.06.163
SU A M,ZHONG Q M,CHEN Y Y,et al. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I [J]. Anal. Chim. Acta, 2018,1023:115-120. doi: 10.1016/j.aca.2018.03.024http://dx.doi.org/10.1016/j.aca.2018.03.024
YAO D M,LI C N,WEN G Q,et al. A highly sensitive and accurate SERS/RRS dual-spectroscopic immunosensor for clenbuterol based on nitrogen/silver-codoped carbon dots catalytic amplification [J]. Talanta, 2020, 209:120529-1-10. doi: 10.1016/j.talanta.2019.120529http://dx.doi.org/10.1016/j.talanta.2019.120529
PARK S J,PARK J Y,CHUNG J W,et al. Color tunable carbon quantum dots from wasted paper by different solvents for anti-counterfeiting and fluorescent flexible film [J]. Chem. Eng. J., 2020,383:123200-1-8. doi: 10.1016/j.cej.2019.123200http://dx.doi.org/10.1016/j.cej.2019.123200
ZHU L L,SHEN D K,WANG Q,et al. Green synthesis of tunable fluorescent carbon quantum dots from lignin and their application in anti-counterfeit printing [J]. ACS Appl. Mater. Interfaces, 2021,13(47):56465-56475. doi: 10.1021/acsami.1c16679http://dx.doi.org/10.1021/acsami.1c16679
GUO J Z,LI H,LING L T,et al. Green synthesis of carbon dots toward anti-counterfeiting [J]. ACS Sustainable Chem. Eng., 2020,8(3):1566-1572. doi: 10.1021/acssuschemeng.9b06267http://dx.doi.org/10.1021/acssuschemeng.9b06267
ZHAO B,YANG S H,YONG X Y,et al. Hydrolyzation-triggered ultralong room-temperature phosphorescence in biobased nonconjugated polymers [J]. ACS Appl. Mater. Interfaces, 2021,13(49):59320-59328. doi: 10.1021/acsami.1c19504http://dx.doi.org/10.1021/acsami.1c19504
ZHU C Z,ZHAI J F,DONG S J. Bifunctional fluorescent carbon nanodots:green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction [J]. Chem. Commun., 2012,48(75):9367-9369. doi: 10.1039/c2cc33844khttp://dx.doi.org/10.1039/c2cc33844k
ZHU Z Q,YANG P,LI X H,et al. Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis [J]. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2020,227:117659-1-7. doi: 10.1016/j.saa.2019.117659http://dx.doi.org/10.1016/j.saa.2019.117659
ZAIB M,ARSHAD A,KHALID S,et al. One pot ultrasonic plant mediated green synthesis of carbon dots and their application invisible light induced dye photocatalytic studies:a kinetic approach [J]. Int. J. Environ. Anal. Chem., 2021:1-19. doi: 10.1080/03067319.2021.1934463http://dx.doi.org/10.1080/03067319.2021.1934463
ACHILLEOS D S,KASAP H,REISNER E. Photocatalytic hydrogen generation coupled to pollutant utilisation using carbon dots produced from biomass [J]. Green Chem., 2020,22(9):2831-2839. doi: 10.1039/d0gc00318bhttp://dx.doi.org/10.1039/d0gc00318b
PRASANNAN A,IMAE T. One-pot synthesis of fluorescent carbon dots from orange waste peels [J]. Ind. Eng. Chem. Res., 2013,52(44):15673-15678. doi: 10.1021/ie402421shttp://dx.doi.org/10.1021/ie402421s
TYAGI A,TRIPATHI K M,SINGH N,et al. Green synthesis of carbon quantum dots from lemon peel waste:applications in sensing and photocatalysis [J]. RSC Adv., 2016,6(76):72423-72432. doi: 10.1039/c6ra10488fhttp://dx.doi.org/10.1039/c6ra10488f
YAO Y,ZHANG H Y,HU K S,et al. Carbon dots based photocatalysis for environmental applications [J]. J. Environ. Chem. Eng., 2022,10(2):107336-1-15. doi: 10.1016/j.jece.2022.107336http://dx.doi.org/10.1016/j.jece.2022.107336
LIU X H,ZHENG J X,YANG Y Z,et al. Preparation of N-doped carbon dots based on starch and their application in white LED [J]. Opt. Mater., 2018,86:530-536. doi: 10.1016/j.optmat.2018.10.057http://dx.doi.org/10.1016/j.optmat.2018.10.057
WANG P,LIU C,TANG W Q,et al. Molecular glue strategy:large-scale conversion of clustering-induced emission luminogen to carbon dots [J]. ACS Appl. Mater. Interfaces, 2019,11(21):19301-19307. doi: 10.1021/acsami.8b22605http://dx.doi.org/10.1021/acsami.8b22605
王琴,杨雯,庄镜儒,等. 生物基碳点制备及其在LED器件上的应用 [J]. 发光学报, 2021,42(8):1314-1322. doi: 10.37188/CJL.20210159http://dx.doi.org/10.37188/CJL.20210159
WANG Q,YANG W,ZHUANG J R,et al. Preparation and application of bio-based carbon dots for LED chips [J]. Chin. J. Lumin., 2021,42(8):1314-1322. (in Chinese). doi: 10.37188/CJL.20210159http://dx.doi.org/10.37188/CJL.20210159
ZHANG X Y,ZHUO M P,LIAO L S. Light-emitting carbon dots extracted from naturally grown torreya grandis seeds [J]. Org. Electron., 2021,96:106255-1-5. doi: 10.1016/j.orgel.2021.106255http://dx.doi.org/10.1016/j.orgel.2021.106255
王士鹏(1997-),男,辽宁葫芦岛人,硕士研究生,2020年于沈阳航空航天大学获得学士学位,主要从事碳量子点和纳米纤维素水凝胶等方面的研究。. doi: 10.1016/j.orgel.2021.106255http://dx.doi.org/10.1016/j.orgel.2021.106255
0
Views
227
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution