浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
2.东北师范大学 先进光电子功能材料研究中心,紫外光发射材料与技术教育部重点实验室, 吉林 长春 130024
[ "王哲(1997-),女,辽宁鞍山人,硕士研究生,2019年于辽宁师范大学获得学士学位,主要从事有机电致发光二极管制备的研究。E-mail: 619211510@qq.com" ]
[ "刘华(1976-),女,吉林长春人,博士,教授,博士生导师,2006年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事衍射光学、非成像光学以及光学设计等领域的研究。E-mail: liuh146@nenu.edu.cn" ]
[ "周亮(1982-),男,江苏徐州人,博士,研究员,博士生导师,2011年于中国科学院长春应用化学研究所获得博士学位,主要从事有机发光二极管工作机理、有机光电子材料及器件设计、器件制备工艺优化及制备装备的研究。E-mail: zhoul@ciac.ac.cn" ]
Published:2022-05,
Received:16 February 2022,
Revised:04 March 2022,
移动端阅览
ZHE WANG, RUI-XIA WU, YANG FENG, et al. High-efficiency Blue Phosphorescent OLEDs Based on Mixed-host Structure by Solution-processed Method. [J]. 发光学报, 2022, 43(5): 763-772.
ZHE WANG, RUI-XIA WU, YANG FENG, et al. High-efficiency Blue Phosphorescent OLEDs Based on Mixed-host Structure by Solution-processed Method. [J]. 发光学报, 2022, 43(5): 763-772. DOI: 10.37188/CJL.20220049.
为了提高蓝色有机发光二极管的效率,本文借助溶液法采用TcTa和CzSi混合主体,制备了蓝色磷光有机发光二极管(PHOLEDs)。此外,针对三种电子传输材料Tm3PyP26PyB、TmPyPB和TPBi进行了优选,以进一步优化器件的效率。本文通过优化混合主体材料的掺杂比例和电子传输材料的选择,不断提高器件的效率。最终,当TcTa∶CzSi的掺杂比为6∶1、电子传输层TPBi为70 nm时器件性能最优,其最大亮度(
B
max
)、电流效率(CE
max
)、功率效率(PE
max
)和外量子效率(EQE
max
)分别为6 662 cd·m
-2
、39.40 cd·A
-1
、23.33 lm·W
-1
和19.7%。此外,即使在1 000 cd·m
-2
的实际亮度下,电流效率和外量子效率仍高达33.43 cd·A
-1
和16.7%。
Blue phosphorescent organic light-emitting diodes(PHOLEDs) which utilized TcTa and CzSi as the mixed-host were fabricated to improve the efficiency by solution-processed method. Additionally
three electron transport materials Tm3PyP26PyB
TmPyPB and TPBi were employed to further enhance the efficiency of devices. The efficiency was improved by optimizing the ratio of host materials and the selection of electron transport material. Finally
the optimal device with the doping ratio TcTa∶CzSi of 6∶1 and 70 nm TPBi layer exhibited the maximum brightness(
B
max
)
current efficiency(CE
max
)
power efficiency(PE
max
) and external quantum efficiency(EQE
max
) of 6 662 cd·m
-2
39.40 cd·A
-1
23.33 lm·W
-1
and 19.7%
respectively. Moreover
outstanding current efficiency and external quantum efficiency as high as 33.43 cd·A
-1
and 16.7%
respectively
were obtained
even at the practical brightness of 1 000 cd·m
-2
.
有机发光二极管高效溶液法混合主体结构蓝光
organic light-emitting diodeshigh efficiencysolution-processedmixed-host structureblue emission
MCCARTHY M A, LIU B, DONOGHUE E P, et al. Low-voltage, low-power, organic light-emitting transistors for active matrix displays[J]. Science, 2011, 332(6029): 570-573.
GU G, FORREST S R. Design of flat-panel displays based on organic light-emitting devices[J]. IEEE J. Sel. Top. Quantum Electron, 1998, 4(1): 83-99.
SHIH C J, LEE C C, YEH T H, et al. Versatile exciplex-forming co-host for improving efficiency and lifetime of fluorescent and phosphorescent organic light-emitting diodes[J]. ACS Appl. Mater. Interfaces, 2018, 10(28): 24090-24098.
CHO Y R, KIM H S, YU Y J, et al. Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure[J]. Sci. Rep., 2015, 5: 15903-1-8.
AIZAWA N, PU Y J, WATANABE M, et al. Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission[J]. Nat. Commun., 2014, 5: 5756-1-7.
FAN C, ZHAO F C, GAN P, et al. Simple bipolar molecules constructed from biphenyl moieties as host materials for deep-blue phosphorescent organic light-emitting diodes[J]. Chem. - Eur. J., 2012, 18(18): 5510-5514.
SHIN H, LEE J H, MOON C K, et al. Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer[J]. Adv. Mater., 2016, 28(24): 4920-4925.
LI Y N, ZHOU L, JIANG Y L, et al. High performance pure blue organic fluorescent electroluminescent devices by utilizing a traditional electron transport material as the emitter[J]. J. Mater. Chem. C, 2017, 5(17): 4219-4225.
LUCAS F, IBRAIKULOV O A, QUINTON C, et al. Spirophenylacridine-2,7-(diphenylphosphineoxide)-fluorene:a bipolar host for high-efficiency single-layer blue phosphorescent organic light-emitting diodes[J]. Adv. Opt. Mater., 2020, 8(2): 1901225-1-8.
CHEN J S, SHI C S, FU Q, et al. Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs[J]. J. Mater. Chem., 2012, 22(11): 5164-5170.
KUMAR M, PEREIRA L. Mixed-host systems with a simple device structure for efficient solution-processed organic light-emitting diodes of a red-orange TADF emitter[J]. ACS Omega, 2020, 5(5): 2196-2204.
HSU F M, CHIEN C H, SHU C F, et al. A bipolar host material containing triphenylamine and diphenylphosphoryl-substituted fluorene units for highly efficient blue electrophosphorescence[J]. Adv. Funct. Mater., 2009, 19(17): 2834-2843.
GAO C H, MA X J, ZHANG Y, et al. 84% efficiency improvement in all-inorganic perovskite light-emitting diodes assisted by a phosphorescent material[J]. RSC Adv., 2018, 8(28): 15698-15702.
CHIU T L, LEE P Y. Carrier injection and transport in blue phosphorescent organic light-emitting device with oxadiazole host[J]. Int. J. Mol. Sci., 2012, 13(6): 7575-7585.
WANG J, ZHANG F J, LIU B, et al. Emission colour-tunable phosphorescent organic light-emitting diodes based on the self-absorption effect and excimer emission[J]. J. Phys. D:Appl. Phys., 2013, 46(1): 015104-1-9.
LIU J, JIANG M H, ZHOU X Y, et al. High-efficient sky-blue and green emissive OLEDs based on FIrpic and FIrdfpic[J]. Synth. Met., 2017, 234: 111-116.
JESURAJ P J, HAFEEZ H, KIM D H, et al. Recombination zone control without sensing layer and the exciton confinement in green phosphorescent OLEDs by excluding interface energy transfer[J]. J. Phys. Chem. C, 2018, 122(5): 2951-2958.
LEE W H, KIM D H, JESURAJ P J, et al. Improvement of charge balance, recombination zone confinement, and low efficiency roll-off in green phosphorescent OLEDs by altering electron transport layer thickness[J]. Mater. Res. Express, 2018, 5(7): 076201.
CHEUNG W L, LAI S L, TANG M C, et al. High performance gold(ⅲ)-based white organic light-emitting devices with extremely small efficiency roll-off[J]. J. Mater. Chem. C, 2019, 7(27): 8457-8464.
KIM J W, YOO S I, KANG J S, et al. Quenching in single emissive white phosphorescent organic light-emitting devices[J]. Org. Electron., 2016, 38: 230-237.
CHENG G, KUI S C F, ANG W H, et al. Structurally robust phosphorescent [Pt(O^N^C^N)] emitters for high performance organic light-emitting devices with power efficiency up to 126 lm·W-1 and external quantum efficiency over 20%[J]. Chem. Sci., 2014, 5(12): 4819-4830.
CUI R Z, LIU W Q, ZHOU L, et al. Highly efficient green phosphorescent organic electroluminescent devices with a terbium complex as the sensitizer[J]. Dyes Pigm., 2017, 163: 361-367.
LI S B, CHEN K, SUN W D, et al. High performance yellow phosphorescent organic light-emitting diodes based on an efficient carriers regulating structure with iridium complex as electron manager[J]. J. Phys. Chem. C, 2021, 125(46): 25422-25429.
WANG Y P, LI B, JIANG C, et al. Study on electron transport characterization in TPBi thin films and OLED application[J]. J. Phys. Chem. C, 2021, 125(30): 16753-16758.
0
Views
295
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution