浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 Bimberg中德绿色光子学研究中心,吉林 长春 130033
2.中国科学院大学,北京 100049
3.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春 130033
4.柏林工业大学 固体物理研究所,纳米光学中心,德国 柏林 D-10623
5.空军装备部驻长春地区军事代表室,吉林 长春 130033
Published:2022-05,
Received:15 February 2022,
Revised:26 February 2022,
移动端阅览
SAI-YI HAN, SI-CONG TIAN, HAN-YANG XU, et al. Research Progress of High-speed 1 550 nm Vertical Cavity Surface Emitting Laser. [J]. Chinese journal of luminescence, 2022, 43(5): 736-744.
SAI-YI HAN, SI-CONG TIAN, HAN-YANG XU, et al. Research Progress of High-speed 1 550 nm Vertical Cavity Surface Emitting Laser. [J]. Chinese journal of luminescence, 2022, 43(5): 736-744. DOI: 10.37188/CJL.20220048.
垂直腔面发射激光器(VCSEL)具有生产成本低、调制速率高等优点,在光通信领域占有重要地位。随着数据需求量的飞速增长,在长距离信息传输中,具有低损耗的1 550 nm 波长的VCSEL引起了研究人员的兴趣。本文首先介绍了1 550 nm VCSEL的结构,然后讨论了其带宽限制因素以及相应的改进方法,接着从NRZ(不归零)调制和PAM4(四电平脉冲幅度)调制两方面对近年来高速1 550 nm VCSEL的研究进展进行了综述,最后展望了高速1 550 nm VCSEL在未来光通信领域的发展和应用。
Vertical cavity surface emitting laser(VCSEL) has the advantages of low production cost and high modulation rate
and plays an important role in the field of optical communication. With the rapid growth of data demand
the 1 550 nm wavelength VCSEL with low loss has aroused the interest of researchers in long-distance information transmission. In this paper
the structure of 1 550 nm VCSEL is introduced firstly
the bandwidth limitation factors and corresponding improvement methods are then discussed
and then the research progress of high-speed 1 550 nm VCSEL in recent years is reviewed from the aspects of NRZ(Non-zero) modulation and PAM4(Four-level pulse amplitude) modulation. Finally the development and application of high-speed 1 550 nm VCSEL in the field of optical communication in the future are prospected.
1 550 nm高速垂直腔面发射激光器(VCSEL)不归零调制(NRZ)四电平脉冲幅度调制(PAM4)
1 550 nmhigh-speed vertical cavity surface emitting laser(VCSEL)non-return to zero modulation(NRZ)four-level pulse amplitude modulation(PAM4)
LAVRENCIK J, VARUGHESE S, LEDENTSOV N, et al. 168 Gbps PAM-4 multimode fiber transmission through 50 m using 28 GHz 850 nm multimode VCSELs[C]. Optical Fiber Communication Conference 2020, San Diego, 2020: W1D.3.
ZUO T J, ZHANG T T, ZHANG S, et al. 850-nm VCSEL-based single-lane 200-Gbps PAM-4 transmission for datacenter intra-connections[J]. IEEE Photonics Technol. Lett., 2021, 33(18): 1042-1045.
NASU H, KISE T, NAGASHIMA K, et al. VCSEL-based parallel-optical modules for > 100 Gb/s applications[C]. 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 2014: Tu.4.5.2-Tu.4.5.4.
刘成. 长波长垂直腔面发射激光器器件工艺与光电特性研究[D]. 上海: 中国科学院研究生院(上海微系统与信息技术研究所), 2007.
LIU C. Device Processing and Optoelectronic Characterizations of Long-wavelength Vertical-cavity Surface-emitting Laser[D]. Shanghai: University of Chinese Academy of Sciences(Shanghai Institute of Microsystems and Information Technology), 2007. (in Chinese)
BABICHEV A V, KARACHINSKII L Y, NOVIKOV I I, et al. Vertical-cavity surface-emitting 1.55-μm lasers fabricated by fusion[J]. Tech. Phys. Lett., 2018, 44(1): 24-27.
LEE S G, FORMAN C A, KEARNS J, et al. Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts[J]. Opt. Express, 2019, 27(22): 31621-31628.
范鑫烨, 白成林, 张丙元, 等. 垂直腔面发射激光器:原理、制备及测试技术[M]. 北京: 科学出版社, 2019.
FAN X Y, BAI C L, ZHANG B Y, et al. Vertical Cavity Surface Emitting Lasers:Principle,Fabrication and Testing Technology[M]. Beijing: Science Press, 2019. (in Chinese)
BLOKHIN S A, BOBROV M A, BLOKHIN A A, et al. The effect of a saturable absorber in long-wavelength vertical-cavity surface-emitting lasers fabricated by wafer fusion technology[J]. Tech. Phys. Lett., 2020, 46(12): 1257-1262.
SPIGA S, SCHOKE D, ANDREJEW A, et al. Enhancing the small-signal bandwidth of single-mode 1.5-μm VCSELs[C]. 2016 IEEE Optical Interconnects Conference(OI), San Diego, 2016: 14-15.
HOFMANN W, MULLER M, BOHM G, et al. 1.55-μm VCSEL with enhanced modulation bandwidth and temperature range[J]. IEEE Photonics Technol. Lett., 2009, 21(13): 923-925.
BLOKHIN S A, BOBROV M A, BLOKHIN A A, et al. Influence of output optical losses on the dynamic characteristics of 1.55-μm wafer-fused vertical-cavity surface-emitting lasers[J]. Semiconductors, 2019, 53(8): 1104-1109.
BABICHEV A V, KARACHINSKY L Y, NOVIKOV I I, et al. Continuous wave and modulation performance of 1 550 nm band wafer-fused VCSELs with MBE-grown InP-based active region and GaAs-based DBRs[C]. Proceedings of SPIE 10122, Vertical-cavity Surface-emitting Lasers ⅩⅪ, San Francisco, 2017: 1012208-1-6.
杨卓凯, 田思聪, LARISCH Gunter, 等. 基于PAM4制的高速垂直腔面发射激光器研究进展[J]. 发光学报, 2020, 41(4): 399-413.
YANG Z K, TIAN S C, LARISCH G, et al. High-speed vertical-cavity surface-emitting lasers based on PAM4 modulation[J]. Chin. J. Lumin., 2020, 41(4): 399-413. (in Chinese)
MULLER M, HOFMANN W, GRUNDL T, et al. 1 550-nm high-speed short-cavity VCSELs[J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17(5): 1158-1166.
SPIGA S, SCHOKE D, ANDREJEW A, et al. Single-mode 1.5-μm VCSELs with 22-GHz small-signal bandwidth[C]. Optical Fiber Communications Conference 2016, Anaheim, 2016: Tu3D.4-1-3.
KARINOU F, PRODANIUC C, STOJANOVIC N, et al. Experimental performance evaluation of equalization techniques for 56 Gb/s PAM-4 VCSEL-based optical interconnects[C]. 2015 European Conference on Optical Communication, Valencia, Spain, 2015: 1-3.
邢茹萍, 马淑芳, 单恒升, 等. 高速850/980 nm垂直腔面发射激光器的研究进展[J]. 中国材料进展, 2021, 40(4): 290-296.
XING R P, MA S F, SHAN H S, et al. Research progress on high-speed 850/980 nm vertical cavity surface emitting lasers[J]. Mater. China, 2021, 40(4): 290-296. (in Chinese)
AL-OMARI A N, ALIAS M S, ABABNEH A, et al. Improved performance of top-emitting oxide-confined polyimide-planarized 980 nm VCSELs with copper-plated heat sinks[J]. J. Phys. D: Appl. Phys., 2012, 45(50): 505101-1-8.
KANAKIS G, ILIADIS N, SOENEN W, et al. High-speed VCSEL-based transceiver for 200 GbE short-reach intra-datacenter optical interconnects[J]. Appl. Sci., 2019, 9(12): 2488-1-11.
WESTBERGH P, GUSTAVSSON J S, KÖGEL B, et al. Impact of photon lifetime on high-speed VCSEL performance[J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17(6): 1603-1613.
MÜLLER M, HOFMANN W, HORN M, et al. Low-parasitics 1.55 μm VCSELs with modulation bandwidths beyond 17 GHz[C]. CLEO/QELS: 2010 Laser Science to Photonic Applications, San Jose, CA, USA, 2010: 1-2.
KARINOU F, DENG L, LOPEZ R R, et al. Performance comparison of 850-nm and 1 550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects[J]. Opt. Fiber Technol., 2013, 19(3): 206-212.
ISOE G M, WASSIN S, ROTICH KIPNOO E K, et al. VCSEL-based differential modulation technique for high-speed gigabit passive optical networks[J]. J. Modern Opt., 2019, 66(4): 419-423.
KARINOU F, RODES R, PRINCE K, et al. IM/DD vs. 4-PAM using a 1 550-nm VCSEL over short-range SMF/MMF links for optical interconnects[C]. 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC), Anaheim, CA, USA, 2013: 1-3.
赵迺智. 高速光传输系统中的FEC技术及系统设计中的OSNR预算[J]. 信息通信, 2020(1): 213-215.
ZHAO N Z. OSNR budget in FEC technology and system design in high-speed optical transport system[J]. Inf. Commun., 2020(1): 213-215. (in Chinese)
孙太富. 阵列波导光栅波分复用器/解复用器的理论研究和优化设计[D]. 南京: 南京邮电大学, 2013.
SUN T F. Analyses and Optimization of Arrayed Waveguide Grating Multiplexer/Demultiplexer[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2013. (in Chinese)
MALACARNE A, SORIANELLO V, DALY A, et al. High-speed long-wavelength VCSELs for energy-efficient 40 Gbps links up to 1 km without error correction[C]. Optical Fiber Communication Conference 2015, Los Angeles, 2015: Tu2H.1-1-3.
KARINOU F, STOJANOVIC N, DALY A, et al. 1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks[J]. J. Lightwave Technol., 2016, 34(12): 2897-2904.
KUCHTA D M, HUYNH T N, DOANY F E, et al. Error-free 56 Gb/s NRZ modulation of a 1 530-nm VCSEL link[J]. J. Lightwave Technol., 2016, 34(14): 3275-3282.
SPIGA S, SOENEN W, ANDREJEW A, et al. Single-mode high-speed 1.5-μm VCSELs[J]. J. Lightwave Technol., 2017, 35(4): 727-733.
BABICHEV A V, KARACHINSKY L Y, NOVIKOV I I, et al. 6-mW single-mode high-speed 1 550-nm wafer-fused VCSELs for DWDM application[J]. IEEE J. Quantum Electron., 2017, 53(6): 2400808-1-8.
RODES R, MUELLER M, LI B M, et al. High-speed 1 550 nm VCSEL data transmission link employing 25 GBd 4-PAM modulation and hard decision forward error correction[J]. J. Lightwave Technol., 2013, 31(4): 689-695.
XIE C J, SPIGA S, DONG P, et al. 400-Gb/s PDM-4PAM WDM system using a monolithic 2×4 VCSEL array and coherent detection[J]. J. Lightwave Technol., 2015, 33(3): 670-677.
KARINOU F, PRODANIUC C, STOJANOVIC N, et al. Directly PAM-4 modulated 1 530-nm VCSEL enabling 56 Gb/s/ λ data-center interconnects[J]. IEEE Photonics Technol. Lett., 2015, 27(17): 1872-1875.
EISELT N, GRIESSER H, WEI J L, et al. Experimental demonstration of 56 Gbit/s PAM-4 over 15 km and 84 Gbit/s PAM-4 over 1 km SSMF at 1 525 nm using a 25 G VCSEL[C]. 42nd European Conference on Optical Communication, Dusseldorf, Germany, 2016: 1-3.
EISELT N, GRIESSER H, WEI J L, et al. Experimental demonstration of 84 Gb/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1 525 nm[J]. J. Lightwave Technol., 2017, 35(8): 1342-1349.
ISOE G M, WASSIN S, LEITCH A W R, et al. 60 Gbps 4-PAM VCSEL-based Raman assisted hyper-scale data centre:in context of spectral efficiency and reach extension[J]. Opt. Commun., 2018, 428: 164-168.
0
Views
526
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution