浏览全部资源
扫码关注微信
1.中国计量大学 材料与化学学院,浙江 杭州 310018
2.中国计量大学 光学与电子科技学院,浙江 杭州 310018
3.中国科学院上海硅酸盐研究所 无机功能材料与器件重点实验室,上海 201899
4.中国科学院高能物理研究所 核探测与核电子学国家重点实验室,北京 100049
Published:2022-05,
Received:06 February 2022,
Revised:17 February 2022,
扫 描 看 全 文
Zhe-hao HUA, Gao TANG, Qin-hua WEI, et al. Photoluminescence Properties and Energy Transfer of Sn2+-Mn2+ Co-doped Gd2O3-Al2O3-SiO2 Glass. [J]. Chinese Journal of Luminescence 43(5):691-701(2022)
Zhe-hao HUA, Gao TANG, Qin-hua WEI, et al. Photoluminescence Properties and Energy Transfer of Sn2+-Mn2+ Co-doped Gd2O3-Al2O3-SiO2 Glass. [J]. Chinese Journal of Luminescence 43(5):691-701(2022) DOI: 10.37188/CJL.20220042.
通过传统的高温熔融淬火技术制备了Sn
2+
-Mn
2+
共掺杂的Gd
2
O
3
-Al
2
O
3
-SiO
2
(GAS∶0.5Sn
2+
,
y
Mn
2+
)玻璃。研究了玻璃的光致发光特性和Sn
2+
-Mn
2+
能量传递过程。在365 nm激发下,随着Mn
2+
浓度的增加(1.0%,1.5%,2.0%,2.5%,3.0%,3.5%,4.0%),玻璃中Sn
2+
的发光强度逐渐降低,而Mn
2+
的发光强度逐渐增大。Sn
2+
的衰减时间随着Mn
2+
含量的增加而减小,玻璃中产生了Sn
2+
到Mn
2+
离子的能量传递。GAS∶0.5Sn
2+
,
y
Mn
2+
玻璃的光致发光量子产率(PLQY)随着Mn
2+
含量的增加而减小,其最大值为25.48%。玻璃中Mn
2+
离子浓度达到4.0%时,其发光属于准白光发射,色坐标为(0.323,0.273)。另外,本文还研究了Sn
2+
-Mn
2+
共掺杂玻璃的发光热猝灭现象,Sn
2+
发光中心电子跃迁所需克服的热激活能约为0.23 eV。
The Sn
2+
-Mn
2+
co-doped Gd
2
O
3
-Al
2
O
3
-SiO
2
(GAS∶0.5Sn
2+
y
Mn
2+
) glass was prepared by traditional high temperature melt-quenching technology. The photoluminescence properties of the glass and the energy transfer process of Sn
2+
-Mn
2+
were studied. Under 365 nm excitation wavelength
with the increase of Mn
2+
content(1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%)
the emission intensity of the Sn
2+
center gradually decreases
and the emission intensity of the Mn
2+
center gradually increases. Moreover
the decay time of the Sn
2+
center decreases with the increase of Mn
2+
content
indicating that energy transfer from Sn
2+
to Mn
2+
ions occurs in the glass. The photoluminescence quantum yield(PLQY) decreases with the increase of Mn
2+
content
the maximum of PLQY of GAS∶0.5Sn
2+
y
Mn
2+
glass is 25.48%. When the Mn
2+
ions concentration reaches 4.0%
the chromatic coordinate of the glass is (0.323
0.273)
which is close to the standard white light emission. In addition
the thermal quenching behavior of Sn
2+
-Mn
2+
co-doped glass was also studied. The thermal activation energy required to overcome the electronic transition of the Sn
2+
emission center is approximately 0.23 eV.
铝硅酸盐玻璃Sn2+-Mn2+共掺能量传递白光发射
aluminum-silicate glassSn2+-Mn2+ co-dopedenergy transferwhite light emission
TONZANI S. Lighting technology: time to change the bulb[J]. Nature, 2009, 459(7245): 312-314.
PHILLIPS J M, COLTRIN M E, CRAWFORD M H, et al. Research challenges to ultra-efficient inorganic solid-state lighting[J]. Laser Photonics Rev., 2007, 1(4): 307-333.
GUO H, WEI R F, WEI Y L, et al. Sb3+/Mn2+ co-doped tunable white emitting borosilicate glasses for LEDs[J]. Opt. Lett., 2012, 37(20): 4275-4277.
MASAI H, TANIMOTO T, FUJIWARA T, et al. Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass[J]. Opt. Express, 2012, 20(25): 27319-27326.
OOMEN E W J L, PEETERS R C M, SMIT W M A, et al. The luminescence of the Sb3+ ion in Ln(PO3)3 (Ln=Sc,Lu,Y,Gd,La)[J]. J. Solid State Chem., 1988, 73(1): 151-159.
TREFILOVA L N, CHARKINA T, KUDIN A, et al. Radiation defects creation in CsI(Tl) crystals and their luminescence properties[J]. J. Lumin., 2003, 102-103: 543-550.
徐扬子, 胡鹤. Mn2+, Pb2+共掺杂ZnS纳米材料制备及光致发光[J]. 发光学报, 2007, 28(4): 589-593.
XU Y Z, HU H. Preparation and photoluminescence properties of ZnS nanocrystals co-doped with Mn2+ and Pb2+[J]. Chin. J. Lumin., 2007, 28(4): 589-593. (in Chinese)
MAO W, CAI M Z, XIE W Q, et al. Tunable white light in trivalent europium single doped tin fluorophosphates ultra-low melting glass[J]. J. Alloys Compd., 2019, 805: 205-210.
MASAI H, FUJIWARA T, MATSUMOTO S, et al. Emission property of Sn2+-doped ZnO-P2O5 glass[J]. J. Non-Cryst. Solids, 2014, 383: 184-187.
WANG Y J, LI Y, HAN S, et al. Continuously tunable broadband emission of Mn2+ -doped low-melting point Sn-F-P-O glasses for warm white light-emitting diodes[J]. J. Am. Ceram. Soc., 2018, 101(12): 5564-5570.
MASAI H, HINO Y, YANAGIDA T, et al. Photoluminescence and radioluminescence properties of MnO-doped SnO-ZnO-P2O5 glasses[J]. Opt. Mater., 2015, 42: 381-384.
MASAI H, FUJIWARA T, MATSUMOTO S, et al. White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation[J]. Optics Letters, 2011, 36(15): 2868-2870.
陈肖慧, 季思航, 袁曦, 等. Mn掺杂CsPbCl3钙钛矿量子点的发光性质[J]. 发光学报, 2018, 39(5): 609-614.
CHEN X H, JI S H, YUAN X, et al. Photoluminescence properties of Mn doped CsPbCl3 perovskite quantum dots[J]. Chin. J. Lumin., 2018, 39(5): 609-614. (in Chinese)
MASAI H, HINO Y, YANAGIDA T, et al. High energy-transfer rate from Sn2+ to Mn2+ in phosphate glasses[J]. Opt. Mater. Express, 2015, 5(3): 617-622.
朱红波, 师学丽, 吴素玉, 等. Sr6Ca4(PO4)6F2∶Eu2+, Mn2+的发光性能调控[J]. 发光学报, 2020, 41(6): 670-678.
ZHU H B, SHI X L, WU S Y, et al. Manipulation of luminescence properties of Sr6Ca4(PO4)6F2∶Eu2+, Mn2+[J]. Chin. J. Lumin., 2020, 41(6): 670-678. (in Chinese)
ZHANG X M, JIANG W, PAN Q, et al. Preparation of Sn2+, Mn2+ co-doped α-Sr2P2O7 as rare-earth-free possible white emitting phosphor[J]. Mater. Lett., 2014, 128: 89-92.
熊晓波, 刘万里, 袁曦明, 等. SrZn2(PO4)2∶Sn2+, Mn2+荧光粉的发光性质及其能量传递机理[J]. 物理学报, 2015, 64(24): 247801-1-8.
XIONG X B, LIU W L, YUAN X M, et al. Photoluminescence properties and energy transfer of SrZn2(PO4)2∶Sn2+, Mn2+ phosphor[J]. Acta Phys. Sinica, 2015, 64(24): 247801-1-8. (in Chinese)
LV T S, XU X H, ZHOU D C, et al. Deep-UV-driven emission-tailorable borosilicate glasses by utilization of Sn2+ cations as versatile energy-transfer establishers[J]. ECS J. Solid State Sci. Technol., 2014, 3(5): R89-R94.
HUA Z H, TANG G, WEI Q H, et al. Photoluminescence and scintillation of Sn2+-doped gadolinium aluminum-silicate glasses[J]. Opt. Mater., 2022, 125: 112102.
徐曼, 唐高, 史宏声, 等. 白光LED用Phosphor-on-Glass(PoG)材料的制备与表征[J]. 人工晶体学报, 2019, 48(7): 1218-1224.
XU M, TANG G, SHI H S, et al. Preparation and characterization of Phosphor-on-Glass(PoG) materials for white LEDs[J]. J. Synth. Cryst., 2019, 48(7): 1218-1224. (in Chinese)
SUN X Y, GAO P, ZHENG Y Q, et al. Enhanced emission intensity of Ce3+ ions in Li2O-B2O3-Gd2O3 scintillating glasses by adding carbon and Si3N4 agent[J]. J. Non-Cryst. Solids, 2015, 422: 12-15.
YUAN Y, ZHENG R L, LU Q, et al. Excellent color rendering index and high quantum efficiency of rare-earth-free fluosilicate glass for single-phase white light phosphor[J]. Opt. Lett., 2016, 41(13): 3122-3125.
JIMÉNEZ J A. Sensitized red emission from Mn2+ ions in phosphate glass via silicon-induced defects[J]. J. Lumin., 2021, 231: 117771.
ZHANG Y, LV J W, DING N, et al. Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration[J]. J. Non-Cryst. Solids, 2015, 423-424: 30-34.
LATYNINA A, WATANABE M, INOMATA D, et al. Properties of Czochralski grown Ce, Gd∶Y3Al5O12 single crystal for white light-emitting diode[J]. J. Alloys Compd., 2013, 553: 89-92.
ZHENG R L, ZHANG Q, YU K H, et al. Continuous tunable broadband emission of fluorphosphate glasses for single-component multi-chromatic phosphors[J]. Opt. Lett., 2017, 42(20): 4099-4102.
ZHENG J J, LU Q, ZHENG R L, et al. Highly efficient and tunable white light emission of Sn2+ -Dy3+ co-doped fluorophosphate glasses[J]. Opt. Mater. Express, 2018, 8(7): 1780-1787.
GUO N, YOU H P, SONG Y H, et al. White-light emission from a single-emitting-component Ca9Gd(PO4)7∶Eu2+, Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes[J]. J. Mater. Chem., 2010, 20(41): 9061-9067.
HSU C H, DAS S, LU C H. Color-tunable, single phased MgY4Si3O13∶Ce3+, Mn2+ phosphors with efficient energy transfer for white-light-emitting diodes[J]. J. Electrochem. Soc., 2012, 159(5): J193-J199.
CALDIÑO U G. On the Ce-Mn clustering in CaF2 in which the Ce3+→Mn2+ energy transfer occurs[J]. J. Phys. Condens. Matter, 2003, 15(22): 3821-3830.
MASAI H, HINO Y, YANAGIDA T, et al. Energy transfer from Sn2+ to RE3+ Cations in ZnO-P2O5 glass[J]. Bull. Chem. Soc. Jpn., 2014, 87(4): 556-563.
XIE R J, HIROSAKI N, KIMURA N, et al. 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors[J]. Appl. Phys. Lett., 2007, 90(19): 191101-1-3.
张曦月, 张乐, 孙炳恒, 等. 高功率密度激发荧光材料的反常热猝灭效应[J]. 发光学报, 2021, 42(10): 1458-1481.
ZHANG X Y, ZHANG L, SUN B H, et al. Abnormal thermal quenching effect of high power density excited fluorescent materials[J]. Chin. J. Lumin., 2021, 42(10): 1458-1481. (in Chinese)
0
Views
160
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution