浏览全部资源
扫码关注微信
1.广东海洋大学 电子与信息工程学院,广东 湛江 524000
2.广东海洋大学深圳研究院 科技发展中心,广东 深圳 518120
3.南方科技大学工学院 电子与电气工程系,广东 深圳 518055
Published:01 April 2022,
Received:04 February 2022,
Revised:21 February 2022,
移动端阅览
HUA XIAO, WAN-LI CHEN, XIANG-TIAN XIAO, et al. Progress on Modulation Bandwidth of Quantum-dot LED in Visible Light Communication. [J]. Chinese journal of luminescence, 2022, 43(4): 598-607.
HUA XIAO, WAN-LI CHEN, XIANG-TIAN XIAO, et al. Progress on Modulation Bandwidth of Quantum-dot LED in Visible Light Communication. [J]. Chinese journal of luminescence, 2022, 43(4): 598-607. DOI: 10.37188/CJL.20220041.
可见光通信(Visible light communication
VLC)作为无线通信领域中与无线射频通信互补的一种空间通信技术,近年来吸引了众多研究人员的关注。除了通信链路的电路设计、调制模式之外,调制带宽是照明光源能否实现高质量VLC的关键因素。区别于传统有机LED、聚合物LED及以GaN/InGaN为代表的无机LED等照明光源,量子点LED(QLED)具备响应速度快、色纯度好、发光效率高、可同时用于光致发光和电致发光等优势,是一种理想的用于可见光通信的固态光源器件。然而,目前对QLED用于VLC的调制带宽机理研究较少,尤其是针对多色QLED以及电致发光QLED。本文从量子点的光转换机制出发,系统综述了不同QLED的调制机理,并对光致发光和电致发光QLED调制带宽的限制因素进行了总结和分析,为QLED在VLC中的应用提供了理论依据。
As one of the wireless communication technologies
visible light communication(VLC) acts as a complement to radio frequency communication
and has attracted many researchers' attention in recent years. Except for electrical circuit designing and modulation mode designing in communication links
modulation bandwidth is one of the key factors to realize high-quality VLC. Different from traditional organic LEDs
polymer LEDs
and inorganic LEDs(such as GaN/InGaN LEDs)
quantum-dot LEDs(QLEDs) show fast response
high color purity
high luminous efficiency
and they can realize photoluminescence and electroluminescence simultaneously. QLED is an ideal solid-state light source for VLC
however
literatures seldom report the mechanism of modulation bandwidth of QLED in VLC
especially the modulation bandwidth of multi-color QLED and electroluminescent QLED. Based on the light conversion mechanism of quantum dots
we systematically review the modulation mechanism of different QLEDs
and analyze the limitation of the modulation bandwidth of photoluminescence and electroluminescence QLEDs. This study lays the theoretical foundation for the application of QLEDs in VLC.
可见光通信发光二极管量子点调制带宽
visible light communicationlight-emitting diodequantum dotmodulation bandwidth
LE TRAN M, KIM S. Joint power allocation and orientation for uniform illuminance in indoor visible light communication [J]. Opt. Express, 2019, 27(20):28575-28587.
JIANG H Y, QIU H B, HE N, et al. Performance of spatial diversity DCO-OFDM in a weak turbulence underwater visible light communication channel [J]. J. Lightw. Technol., 2020, 38(8):2271-2277.
CHENG L, VIRIYASITAVAT W, BODAN M, et al. Comparison of radio frequency and visible light propagation channels for vehicular communications [J]. IEEE Access, 2017, 6:2634-2644.
张颖, 雷亚茹, 黄朝军. 车载可见光通信系统工作区间的研究 [J]. 激光与光电子学进展, 2021, 58(17):1706002-1-8.
ZHANG Y, LEI Y R, HUANG C J. Working range of vehicle-mounted visible light communication system [J]. Laser Optoelectron. Progress, 2021, 58(17):1706002-1-8. (in Chinese)
FAHS B, CHOWDHURY A J, HELLA M M. A 12-m 2.5-Gb/s lighting compatible integrated receiver for OOK visible light communication links [J]. J. Lightw. Technol., 2016, 34(16):3768-3775.
王志斌, 董伟, 任英, 等. 可见光通信中的白光LED非线性噪声分析 [J]. 发光学报, 2018, 39(5):745-750.
WANG Z B, DONG W, REN Y, et al. Nonlinear noise analysis about white LED in visible light communication [J]. Chin. J. Lumin., 2018, 39(5):745-750. (in Chinese)
TIAN C W, LI Y T, YE W L, et al. Performance study of an OFDM visible light communication system based on white LED array [J]. Optoelectron. Lett., 2012, 7(6):454-457.
贾科军, 魏少博, 蔺莹, 等. 可见光通信预编码光正交频分复用系统的研究 [J]. 光学学报, 2021, 41(17):1706004-1-8.
JIA K J, WEI S B, LIN Y, et al. Research on precoding optical orthogonal frequency division multiplexing system in visible light communication [J]. Acta Opt. Sinica, 2021, 41(17):1706004-1-8. (in Chinese)
ZHENG Z, LIU L, HU W W. Accuracy of ranging based on DMT visible light communication for indoor positioning [J]. IEEE Photonics Technol. Lett., 2017, 29(8):679-682.
LIN W Y, CHEN C Y, LU H H, et al. 10 m/500 Mbps WDM visible light communication systems [J]. Opt. Express, 2012, 20(9):9919-9924.
HUANG N, WANG J B, WANG J Y, et al. PAM sequence design for dimmable visible light communication [J]. Opt. Commun., 2017, 384:130-136.
ZHANG Y L, WANG L, WANG K, et al. Recent advances in the hardware of visible light communication [J]. IEEE Access, 2019, 7:91093-91104.
ZHANG H Q, YANG A Y, FENG L H, et al. Gb/s real-time visible light communication system based on white LEDs using T-bridge cascaded pre-equalization circuit [J]. IEEE Photonics J., 2018, 10(2):7901807-1-7.
CHAO L, XU Z Y, CHAO Y, et al. Experimental demonstration of clipping noise mitigation for OFDM-based underwater optical wireless communications [C]. Asia Communications and Photonics Conference, Guangzhou, 2017:1-3.
XIAO X T, TANG H D, ZHANG T Q, et al. Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication [J]. Opt. Express, 2016, 24(19):21577-21586.
XIE E Y, HE X Y, ISLIM M S, et al. High-speed visible light communication based on a Ⅲ-nitride series-biased micro-LED array [J]. J. Lightw. Technol., 2019, 37(4):1180-1186.
YEH C H, LIU Y L, CHOW C W. Real-time white-light phosphor-LED visible light communication(VLC) with compact size [J]. Opt. Express, 2013, 21(22):26192-26197.
BINH P H, HUNG N T. High-speed visible light communications using ZnSe-based white light emitting diode [J]. IEEE Photonics Technol. Lett., 2016, 28(18):1948-1951.
THAI P Q. Real-time 138-kb/s transmission using OLED with 7-kHz modulation bandwidth [J]. IEEE Photonics Technol. Lett., 2015, 27(24):2571-2574.
HAIGH P A, BAUSI F, GHASSEMLOOY Z, et al. Visible light communications:real time 10 Mb/s link with a low bandwidth polymer light-emitting diode [J]. Opt. Express, 2014, 22(3):2830-2838.
CHALESHTORI Z N, ZVANOVEC S, GHASSEMLOOY Z, et al. Coverage of a shopping mall with flexible OLED-based visible light communications [J]. Opt. Express, 2020, 28(7):10015-10026.
LI H L, CHEN X B, GUO J Q, et al. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application [J]. Opt. Express, 2014, 22(22):27203-27213.
ZHAO Y H, ZOU P, HE Z X, et al. Low spatial complexity adaptive artificial neural network post-equalization algorithms in MIMO visible light communication systems [J]. Opt. Express, 2021, 29(20):32728-32738.
LI H L, ZHANG Y N, CHEN X B, et al. 682 Mbit/s phosphorescent white LED visible light communications utilizing analog equalized 16QAM-OFDM modulation without blue filter [J]. Opt. Commun., 2015, 354:107-111.
ZHANG X W, LIN T, ZHANG P, et al. Tunable quantum dot arrays as efficient sensitizers for enhanced near-infrared electroluminescence of erbium ions [J]. Nanoscale, 2018, 10(8):4138-4146.
WANG J Y, MENG H M, CHEN J, et al. Quantum dot-based lateral flow test strips for highly sensitive detection of the tetanus antibody [J]. ACS Omega, 2019, 4(4):6789-6795.
PU C D, PENG X G. To battle surface traps on CdSe/CdS core/shell nanocrystals:shell isolation versus surface treatment [J]. J. Am. Chem. Soc., 2016, 138(26):8134-8142.
SONG J J, WANG O Y, SHEN H B, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer [J]. Adv. Funct. Mater., 2019, 29:1808377-1-9.
XIAO H, XIAO X T, WANG K, et al. Optimization of illumination performance of trichromatic white light-emitting diode and characterization of its modulation bandwidth for communication applications [J]. IEEE Photonics J., 2018, 10(5):8201511-1-11.
XIAO H, XIAO X T, WU D, et al. Effects of injection current on the modulation bandwidths of quantum-dot light-emitting diodes [J]. IEEE Trans. Electron Devices, 2019, 66(11):4805-4810.
LAKOWICZ J R. Principles of Fluorescence Spectroscopy [M]. New York: Plenum Press, 1983.
XIAO X T, XIAO H, LIU H C, et al. Modeling and analysis for modulation of light-conversion materials in visible light communication [J]. IEEE Photonics J., 2019, 11(5):8201113-1-13.
BANSAL A K, ANTOLINI F, SAJJAD M T, et al. Photophysical and structural characterisation of in situ formed quantum dots [J]. Phys. Chem. Chem. Phys., 2014, 16(20):9556-9564.
ZHANG F J, WANG S J, WANG L, et al. Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets [J]. Nanoscale, 2016, 8(24):12182-12188.
XIAO H, WANG R, GUI H, et al. 4 Mb/s under a 3 m transmission distance using a quantum dot light-emitting diode and NRZ-OOK modulation [J]. Opt. Lett., 2020, 45(6):1297-1300.
DURSUN I, CHEN C, PARIDA M, et al. Perovskite nanocrystals as a color converter for visible light communication [J]. ACS Photonics, 2016, 3(7):1150-1156.
ZHOU Z J, TIAN P F, LIU X Y, et al. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted,aggregation-enhanced emission for light-emitting devices and visible light communication [J]. Adv. Sci., 2018, 5(8):1800369-1-8.
HUANG Y, GUO Z Y, HUANG H Y, et al. Influence of current density and capacitance on the bandwidth of VLC LED [J]. IEEE Photonics Technol. Lett., 2018, 30(9):773-776.
ZHU C Y, FENG L F, WANG C D, et al. Negative capacitance in light-emitting devices [J]. Solid-State Electronics, 2009, 53(3):324-328.
SAUL R H. Recent advances in the performance and reliability of InGaAsP LED's for lightwave communication systems [J]. IEEE Trans. Electron Devices, 1983, 30(4):285-295.
张福林, 林旭, 廖欣, 等. InGaN蓝光LED量子效率与注入电流的关系研究 [J]. 光电子·激光, 2009, 20(11):1442-1445.
ZHANG F L, LIN X, LIAO X, et al. Investigation on the injected current dependence of InGaN blue LED’s quantum efficiency [J]. J. Optoelectron.·Laser, 2009, 20(11):1442-1445. (in Chinese)
HENRY C H, LEVINE B F, LOGAN R A, et al. Minority carrier lifetime and luminescence efficiency of 1.3 μm InGaAsP-InP double heterostructure layers [J]. IEEE J. Quantum Electronics, 1983, 19(6):905-912.
ARAFAT Y, MOHAMMEDY M F, HASSAN M M S. Optical and other measurement techniques of carrier lifetime in semiconductors [J]. Int. J. Optoelectron. Eng., 2012, 2(2):5-11.
BERLEB S, BRÜTTING W, PAASCH G. Interfacial charges in organic hetero-layer light emitting diodes probed by capacitance-voltage measurements [J]. Synth. Met., 2001, 122(1):37-39.
XIAO H, WANG K, WANG R, et al. Equivalent circuit of quantum-dot LED and acquisition of carrier lifetime in active layer [J]. IEEE Electron Device Lett., 2020, 41(1):87-90.
XIAO H, WANG R, WANG K, et al. Trade-offs between illumination and modulation performances of quantum-dot LED [J]. IEEE Photonics Technol. Lett., 2020, 32(12):726-729.
田媛. 信道模型的研究与应用 [J]. 大连大学学报, 2017, 38(6):19-24.
TIAN Y. The study and application of information channel model [J]. J. Dalian Univ., 2017, 38(6):19-24. (in Chinese)
ZHANG X Y, SUN C, ZHANG Y, et al. Bright perovskite nanocrystal films for efficient light-emitting devices [J]. J. Phys. Chem. Lett., 2016, 7(22):4602-4610.
GENERALOV R, KAVALIAUSKIENE S, WESTRØM S, et al. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots [J]. Int. J. Nanomedicine, 2011, 6:1875-1888.
CHEN C, ZHANG P F, GAO G H, et al. Near-infrared-emitting two-dimensional codes based on lattice-strained core/(doped) shell quantum dots with long fluorescence lifetime [J]. Adv. Mater., 2014, 26(36):6313-6317.
LU M, GUO J, SUN S Q, et al. Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure [J]. Chem. Eng. J., 2020, 404:126563-1-7.
0
Views
381
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution