浏览全部资源
扫码关注微信
1.上海洞舟实业有限公司,上海 201619
2.东华大学 纤维材料改性国家重点实验室,上海 201620
3.上海科润光电技术有限公司,上海 201100
Published:2022-05,
Received:21 January 2022,
Revised:07 February 2022,
扫 描 看 全 文
Su-wen GUO, Wei-feng YANG, Yun-hao HU, et al. Progress of Zinc Sulfide Electroluminescent Materials in Intelligent Wearable Field. [J]. Chinese Journal of Luminescence 43(5):796-806(2022)
Su-wen GUO, Wei-feng YANG, Yun-hao HU, et al. Progress of Zinc Sulfide Electroluminescent Materials in Intelligent Wearable Field. [J]. Chinese Journal of Luminescence 43(5):796-806(2022) DOI: 10.37188/CJL.20220027.
近年来,伴随着柔性电子产业的快速发展,发光显示作为可穿戴集成器件中必不可少的组成部分,人们对其提出了柔性、可拉伸性、自愈合性等额外的需求。基于硫化锌材料的电致发光器件由于发光寿命长、发光组件结构简单等优点,在智能可穿戴领域得到了广泛的研究和关注。本文对硫化锌电致发光材料在智能可穿戴领域的研究进展进行梳理和总结,主要介绍了硫化锌电致发光材料的发光机理、研究热点及未来应用,以期对智能可穿戴领域起到有益的启示和指导作用。
In recent years
with the rapid development of flexible electronics industry
as an indispensable part of wearable integrated devices
light-emitting display has been put forward additional requirements such as flexibility
stretchability and self-healing. Electroluminescent devices based on zinc sulfide materials have received extensive research and attention in the field of intelligent wearables due to their advantages of long life and simple structure of luminescent components. In this paper
the research progress of zinc sulfide electroluminescent materials in the field of smart wearables is summarized
and the luminescence mechanism
research hotspots and future applications of zinc sulfide electroluminescent materials are mainly introduced
in order to play a beneficial enlightenment and guidance role in the field of smart wearables.
电致发光柔性可拉伸性智能可穿戴
electroluminescenceflexibilityextensibilitysmart wearables
管世振. 薄膜、厚膜电致发光器件的研究[D]. 天津: 天津理工大学, 2007.
GUAN S Z. Studies on Thin and Thick Dielectric Electroluminescent Device[D]. Tianjin: Tianjin University of Technology, 2007. (in Chinese)
王余姜, 柳兆洪, 陈谋智, 等. 硫化锌交流电致发光薄膜结构与特性研究[J]. 固体电子学研究与进展, 1999, 19(3): 294-297.
WANG Y J, LIU Z H, CHEN M Z, et al. Studies of microstructure and ACEL characteristics in zinc sulfide thin films[J]. Res. Prog. Solid State Electron., 1999, 19(3): 294-297. (in Chinese)
董国义, 林琳, 韦志仁, 等. 退火处理对ZnS∶Cu,Mn电致发光材料亮度的影响[J]. 发光学报, 2005, 26(6): 733-736.
DONG G Y, LIN L, WEI Z R, et al. Effect of annealing on brightness of ZnS∶Cu, Mn ACEL material[J]. Chin. J. Lumin., 2005, 26(6): 733-736. (in Chinese)
SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Adv. Mater., 2020, 32(5): 1901958-1-37.
WANG J X, YAN C Y, CHEE K J, et al. Highly stretchable and self-deformable alternating current electroluminescent devices[J]. Adv. Mater., 2015, 27(18): 2876-2882.
CAO Y, TAN Y J, LI S, et al. Self-healing electronic skins for aquatic environments[J]. Nat. Electron., 2019, 2(2): 75-82.
ZHAO X, ZHANG Z, LIAO Q L, et al. Self-powered user-interactive electronic skin for programmable touch operation platform[J]. Sci. Adv., 2020, 6(28): eaba4294-1-8.
MA Z J, HUANG Q Y, XU Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics[J]. Nat. Mater., 2021, 20(6): 859-868.
李长胜, 陈佳, 王伟岐, 等. ZnS∶Cu电致发光电压传感器及其温度漂移补偿[J]. 中国光学, 2017, 10(4): 514-521.
LI C S, CHEN J, WANG W Q, et al. ZnS∶Cu electroluminescent voltage sensor and its temperature drift compensation[J]. Chin. Opt., 2017, 10(4): 514-521. (in Chinese)
JEONG S M, SONG S, LEE S K, et al. Mechanically driven light-generator with high durability[J]. Appl. Phys. Lett., 2013, 102(5): 051110-1-5.
吴峰. ZnS∶Cu电致发光粉表面包覆SiO2的研究[D]. 保定: 河北大学, 2003.
WU F. The Study of the Coating of Silicon Dioxide on the Surface of EL Phosphor ZnS∶Cu[D]. Baoding: Hebei University, 2003. (in Chinese)
周连祥. ZnS∶Mn、Cu粉末直流电致发光器件直流和交流电致发光一致性的研究[J]. 发光学报,1993, 14(2): 145-153.
ZHOU L X. Study of the consistence in DCEL and ACEL characteristics of powder ZnS∶Mn, Cu DCEL devices[J]. Chin. J. Lumin., 1993, 14(2): 145-153. (in Chinese)
李静怡. 无机交流柔性电致发光纺织品的制备及其性能研究[D]. 上海: 东华大学, 2020.
LI J Y. Preparation and Research of Flexible AC-Electroluminescent Textiles[D]. Shanghai: Donghua University, 2020. (in Chinese)
王现川. 柔性/可拉伸ZnS∶Cu电致发光器件的制备与应用研究[D]. 郑州: 郑州大学, 2019.
WANG X C. Research on Preparation and Applications of Flexible/Stretchable ZnS∶Cu Electroluminescent Device[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese)
邓朝勇, 王永生, 杨胜. 无机薄膜电致发光研究进展[J]. 功能材料, 2002, 33(2): 133-135.
DENG C Y, WANG Y S, YANG S. Research on inorganic thin film electroluminescence[J]. J. Funct. Mater., 2002, 33(2): 133-135. (in Chinese)
YANG Z L, WANG W W, PAN J, et al. Alternating current electroluminescent devices with inorganic phosphors for deformable displays[J]. Cell Rep. Phys. Sci., 2020, 1(10): 100213-1-27.
ZHOU X F, XU X J, ZUO Y, et al. A fiber-shaped light-emitting pressure sensor for visualized dynamic monitoring[J]. J. Mater. Chem. C, 2020, 8(3): 935-942.
YANG W F, GONG W, GU W, et al. Self-powered interactive fiber electronics with visual-digital synergies[J]. Adv. Mater., 2021, 33(45): 2104681-1-10.
WANG J X, YAN C Y, CAI G F, et al. Extremely stretchable electroluminescent devices with ionic conductors[J]. Adv. Mater., 2016, 28(22): 4490-4496.
KANG J, TOK J B H, BAO Z N. Self-healing soft electronics[J]. Nat. Electron., 2019, 2(4): 144-150.
SHI L, JIA K, GAO Y Y, et al. Highly stretchable and transparent ionic conductor with novel hydrophobicity and extreme-temperature tolerance[J]. Research, 2020, 2020: 2505619-1-10.
TAN Y J, GODABA H, CHEN G, et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics[J]. Nat. Mater., 2020, 19(2): 182-188.
ZUO Y, SHI X, ZHOU X F, et al. Flexible color-tunable electroluminescent devices by designing dielectric-distinguishing double-stacked emissive layers[J]. Adv. Funct. Mater., 2020, 30(50): 2005200-1-9.
ZHOU Y L, ZHAO C S, WANG J C, et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays[J]. ACS Mater. Lett., 2019, 1(5): 511-518.
STAUFFER F, TYBRANDT K. Bright stretchable alternating current electroluminescent displays based on high permittivity composites[J]. Adv. Mater., 2016, 28(33): 7200-7203.
SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245.
HU D, XU X R, MIAO J S, et al. A stretchable alternating current electroluminescent fiber[J]. Materials, 2018, 11(2): 184-1-10.
LARSON C, PEELE B, LI S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074.
ZHANG P, LI Q, XIAO Y H, et al. Biomimetic hydrophilic islands for integrating elastomers and hydrogels of regulable curved profiles[J]. ACS Appl. Electron. Mater., 2020, 3(2): 668-675.
CAO Y, MORRISSEY T G, ACOME E, et al. A transparent, self-healing, highly stretchable ionic conductor[J]. Adv. Mater., 2017, 29(10): 1605099-1-9.
LIANG G J, LIU Z X, MO F N, et al. Self-healable electroluminescent devices[J]. Light: Sci. Appl., 2018, 7: 102-1-11.
CHO S H, LEE S W, HWANG I, et al. Shape-deformable self-healing electroluminescence displays[J]. Adv. Opt. Mater., 2019, 7(3): 1801283-1-10.
JIN W, KIM E H, LEE S, et al. Tandem interactive sensing display de-convoluting dynamic pressure and temperature[J]. Adv. Funct. Mater., 2021, 31(23): 2010492-1-10.
KIM E H, HAN H, YU S, et al. Interactive skin display with epidermal stimuli electrode[J]. Adv. Sci., 2019, 6(13): 1802351-1-8.
YANG W F, GONG W, HOU C Y, et al. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability[J]. Nat. Commun., 2019, 10(1): 5541-1-10.
WANG L, FU X M, HE J Q, et al. Application challenges in fiber and textile electronics[J]. Adv. Mater., 2020, 32(5): 1901971-1-25.
WU Y Y, MECHAEL S S, CHEN Y T, et al. Solution deposition of conformal gold coatings on knitted fabric for E-textiles and electroluminescent clothing[J]. Adv. Mater. Technol., 2018, 3(3): 1700292-1-7.
ZHANG Z T, CUI L Y, SHI X, et al. Textile display for electronic and brain-interfaced communications[J]. Adv. Mater., 2018, 30(18): 1800323-1-8.
LEE Y, SONG W J, JUNG Y, et al. Ionic spiderwebs[J]. Sci. Robot., 2020, 5(44): eaaz5405.
BERLINGER F, DUDUTA M, GLORIA H, et al. A modular dielectric elastomer actuator to drive miniature autonomous underwater vehicles[C]. Proceedings of 2018 IEEE International Conference on Robotics and Automation(ICRA), Brisbane, 2018: 3429-3435.
0
Views
437
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution