浏览全部资源
扫码关注微信
1.太原理工大学 物理与光电工程学院,山西 太原 030024
2.中国地质大学(武汉) 材料与化学学院,湖北 武汉 430074
3.深圳大学 微纳光电子学研究院,广东 深圳 518060
Published:2022-05,
Received:23 January 2022,
Revised:11 February 2022,
移动端阅览
JIA-YU HE, KE-QIANG CHEN, TING JI, et al. Research Progress of Fast Response 2D Material Photodetectors with Metal-semiconductor-metal Structure. [J]. Chinese journal of luminescence, 2022, 43(5): 745-762.
JIA-YU HE, KE-QIANG CHEN, TING JI, et al. Research Progress of Fast Response 2D Material Photodetectors with Metal-semiconductor-metal Structure. [J]. Chinese journal of luminescence, 2022, 43(5): 745-762. DOI: 10.37188/CJL.20220024.
快速响应光电探测器在光通信、高速摄影、生物医学成像等领域有广泛的需求。目前,市场上应用的快速响应光电探测器大多基于硅、砷化镓等传统的无机半导体材料,但是其制作工艺复杂、成本较高,并且机械灵活性差。以石墨烯、二硫化钼为代表的二维材料具有独特的层状结构以及良好的光学、电学、热学和机械特性,是制备光电探测器的理想材料。尤其是部分二维材料所拥有的超高载流子迁移率特性,十分适用于研制快速响应光电探测器。近年来,一系列基于二维材料的金属-半导体-金属结构光电探测器(Metal-semiconductor-metal photodetectors,MSM-PDs)被陆续报道,很多具有1 μs以下的快速响应特性。本文以基于二维材料的快速响应MSM-PDs为主题进行综述。首先介绍了MSM-PDs中的基本结构及工作原理,深入剖析了决定其响应速度的主要因素。随后介绍了石墨烯、过渡金属硫化物、黑磷、二维钙钛矿、三元硒氧铋等二维材料的分子结构、光学、电学等特性,并对各类二维材料在MSM-PDs的应用进行对比。然后分类介绍了响应速度在1 μs以下的欧姆接触型、肖特基接触型以及基于表面等离激元效应二维材料MSM-PDs的研究进展。最后总结全文,并对二维材料在快速响应光电探测器中的应用前景及发展趋势进行了展望。
Fast response photodetectors are widely used in optical communication
high-speed photography
biomedical imaging and other fields. Most of the fast response photodetectors used in the market are based on traditional inorganic semiconductor materials such as silicon and gallium arsenide
but their fabrication process is complex
the cost is high
and the mechanical flexibility is poor. Two-dimensional materials
such as graphene and molybdenum disulfide
due to their unique layered structure and good optical
electrical
thermal and mechanical properties
are ideal materials for fabricating photodetectors. In particular
two-dimensional materials with ultra-high carrier mobilities are very suitable for developing fast response photodetectors. In recent years
a series of metal-semiconductor-metal photodetectors(MSM-PDs) based on two-dimensional materials have been reported
and their response time is often less than 1 μs. In this paper
rapid response two-dimensional materials based MSM-PDs are reviewed. Firstly
the basic structure and working principle of MSM-PDs are introduced
and the main factors that determine the response speed of MSM-PD are given. Then
the molecular structure
optical and electrical properties of graphene
transition metal sulfide
black phosphorus
two-dimensional perovskite and other two-dimensional materials are introduced. After that
research progress of Ohmic-contact type
Schottky-contact type and surface plasmon polarization enhanced MSM-PDs with the response time less than 1 μs is given. Finally
we summarize the full text
and prospect the application and development trend of two-dimensional materials in rapid response photodetectors.
光电探测器快速响应二维材料石墨烯过渡金属硫化物黑磷二维钙钛矿金属-半导体-金属
photodetectorsfast responsetwo-dimensional materialsgraphenetransition metal sulfideblack phosphorustwo-dimensional perovskitesmetal-semiconductor-metal
CHEN Z, CHENG Z, WANG J, et al. High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode[J]. Adv. Opt. Mater., 2015, 3(9): 1207-1214.
李家意, 丁一, 张卫, 等. 基于二维材料及其范德瓦尔斯异质结的光电探测器[J]. 物理化学学报, 2019, 35(10): 1058-1077.
LI J Y, DING Y, ZHANG D W, et al. Photodetectors based on two-dimensional materials and their van der Waals heterostructures[J]. Acta Phys.-Chim. Sinica, 2019, 35(10): 1058-1077. (in Chinese)
WANG F, WANG Z X, YIN L, et al. 2D library beyond graphene and transition metal dichalcogenides:a focus on photodetection[J]. Chem. Soc. Rev., 2018, 47(16): 6296-6341.
FERRARI A C, BONACCORSO F, FAL'KO V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4598-4810.
WANG X G, LI M M, ZHANG B, et al. Recent progress in organometal halide perovskite photodetectors[J]. Org. Electron., 2018, 52: 172-183.
黄彦民, 袁明鉴, 李玉良. 二维半导体材料与器件——从传统二维光电材料到石墨炔[J]. 无机化学学报, 2017, 33(11): 1914-1936.
HUANG Y M, YUAN M J, LI Y L. Two-dimensional semiconducting materials and devices:from traditional two-dimensional optoelectronic materials to graphdiyne[J]. Chin. J. Inorg. Chem., 2017, 33(11): 1914-1936. (in Chinese)
张恒康, 冀婷, 李国辉, 等. 二维材料光电探测器的研究进展[J]. 半导体技术, 2020, 45(1): 43-51.
ZHANG H K, JI T, LI G H, et al. Research progress of photodetectors based on two-dimensional material[J]. Semicond. Technol., 2020, 45(1): 43-51. (in Chinese)
夏风梁, 石凯熙, 赵东旭, 等. 二维WSe2场效应晶体管光电性能[J]. 发光学报, 2021, 42(2): 257-263.
XIA F L, SHI K X, ZHAO D X, et al. Optoelectronic performance of 2D WSe2 field effect transistor[J]. Chin. J. Lumin., 2021, 42(2): 257-263. (in Chinese)
WANG Y X, WU W D, ZHAO Z R. Recent progress and remaining challenges of 2D material-based terahertz detectors[J]. Infrared Phys. Technol., 2019, 102: 103024-1-14.
NIU Y, LI Y, JIN D P, et al. A survey of millimeter wave communications(mm Wave) for 5G:opportunities and challenges[J]. Wirel. Netw., 2015, 21(8): 2657-2676.
GONG A P, QIU Y T, CHEN X W, et al. Biomedical applications of terahertz technology[J]. Appl. Spectrosc. Rev., 2020, 55(5): 418-438.
WANG B, ZHONG S P, ZHANG Z B, et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors[J]. Appl. Mater. Today, 2019, 15: 115-138.
LIU H B, ZHONG H, KARPOWICZ N, et al. Terahertz spectroscopy and imaging for defense and security applications[J]. Proc. IEEE, 2007, 95(8): 1514-1527.
DAI M, CHEN H, WANG F, et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts[J]. Acs Nano, 2020, 14(7): 9098-9106
杨珏晗, 魏钟鸣, 牛智川. 基于二维材料异质结的光探测器研究进展[J]. 人工晶体学报, 2020, 49(3): 379-397.
YANG J H, WEI Z M, NIU Z C. Recent progress on two-dimensional heterostructure based photodetectors[J]. J. Synthet. Cryst., 2020, 49(3): 379-397. (in Chinese)
孟宪成, 田贺, 安侠, 等. 基于二维材料二硒化锡场效应晶体管的光电探测器[J]. 物理学报, 2020, 69(13): 137801-1-7.
MENG X C, TIAN H, AN X, et al. Field effect transistor photodetector based on two dimensional SnSe2[J]. Acta Phys. Sinica, 2020, 69(13): 137801-1-7. (in Chinese)
徐春燕, 南海燕, 肖少庆, 等. 基于二维半导体材料光电器件的研究进展[J]. 电子与封装, 2021, 21(3): 030401-1-15.
XU C Y, NAN H Y, XIAO S Q, et al. Research progress of photoelectric devices based on 2D semiconductor materials[J]. Electron. Packag., 2021, 21(3): 030401-1-15. (in Chinese)
SMITH F W, LE H Q, DIADIUK V, et al. Picosecond GaAs-based photoconductive optoelectronic detectors[J]. Appl. Phys. Lett., 1989, 54(10): 890-890.
CHEN Y, WILLIAMSON S, BROCK T, et al. 375-GHz-bandwidth photoconductive detector[J]. Appl. Phys. Lett., 1991, 59(16): 1984-1986.
WANG X, TIAN W, LIAO M Y, et al. Recent advances in solution-processed inorganic nanofilm photodetectors[J]. Chem. Soc. Rev., 2014, 43(5): 1400-1422.
WU K, ZHAN Y H, ZHANG C, et al. Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application[J]. Sci. Rep., 2015, 5: 14304-1-3.
CHUAH L S, HASSAN Z, HASSAN H A, et al. Barrier height enhanced Gan Schottky diodes using a thin ALN surface layer[J]. Int. J. Mod. Phys. B, 2008, 22(29): 5167-5173.
SUGETA T, URISU T, SAKATA S, et al. Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits[J]. Jpn. J. Appl. Phys., 1980, 19(S1): 459-464.
MUHAMMAD Z, MUNIR T, NASEEM S. Electrical and optical transient behavior of n-GaN metal-semiconductor-metal (MSM) photodetector[J]. Energy Environ. Focus, 2013, 2(3): 222-226.
SZE S M, JRCOLEMAN D J, LOYA A. Current transport in metal-semiconductor-metal(MSM) structures[J]. Solid-State Electron., 1971, 14(12): 1209-1218.
SCHUMACHER H, LEBLANC H P, SOOLE J, et al. An investigation of the optoelectronic response of GaAs/InGaAs MSM photodetectors[J]. IEEE Electron Device Lett., 1988, 9(11): 607-609.
SOOLE J B D, SCHUMACHER H, ESAGUI R, et al. Waveguide integrated MSM photodetector for the 1.3 μm-1.6 μm wavelength range[C]. Technical Digest., International Electron Devices Meeting, San Francisco, 1988: 483-486.
ZHANG Y P, DENG W, ZHANG X J, et al. In situ integration of squaraine-nanowire-array-based Schottky-type photodetectors with enhanced switching performance[J]. ACS Appl. Mater. Interfaces, 2013, 5(23): 12288-12294.
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522.
SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nat. Commun., 2015, 6: 7586-1-6.
MACULAN G, SHEIKH A D, ABDELHADY A L, et al. CH3NH3PbCl3 single crystals:inverse temperature crystallization and visible-blind UV-photodetector[J]. J. Phys. Chem. Lett., 2015, 6(19): 3781-3786.
LIU Y C, SUN J K, YANG Z, et al. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors[J]. Adv. Opt. Mater., 2016, 4(11): 1829-1837.
DUIJNSTEE E A, BALL J M, LE CORRE V M, et al. Toward understanding space-charge limited current measurements on metal halide perovskites[J]. ACS Energy Lett., 2020, 5(2): 376-384.
SZE S M, NG K K. Photodetectors and solar cells[M]. SZE S M, NG K K. Physics of Semiconductor Devices. Hoboken: John Wiley & Sons, Inc., 2007: 663-742.
徐新龙, 马菁瑶, 卢春辉, 等. 基于二维层状半导体材料的光电极特性及其研究进展[J]. 西北大学学报(自然科学版), 2020, 50(3): 360-376.
XU X L, MA J Y, LU C H, et al. Characteristics of photoelectrode based on two-dimensional layered semiconductor materials and its research progress[J]. J. Northwest Univ. (Nat. Sci. Ed.), 2020, 50(3): 360-376. (in Chinese)
尤凯熹, 范涛健, 葛颜绮, 等. 二维纳米材料黑磷的光电特性研究进展[J]. 物理学进展, 2018, 38(4): 163-174.
YOU K X, FAN T J, GE Y Q, et al. The research progress on photoelectric properties of two-dimensional nanomaterial black phosphorus[J]. Prog. Phys., 2018, 38(4): 163-174. (in Chinese)
马雅婷, 程湘爱. 二维过渡金属硫族化合物的自旋-能谷特性研究进展[J]. 光电技术应用, 2020, 35(6): 32-35.
MA Y T, CHENG X A. Spin-valley property of two-dimensional transition metal dichalcogenides[J]. Electro-Opt. Technol. Appl., 2020, 35(6): 32-35. (in Chinese)
张永哲, 李松宇, 陈小青. 二维材料光子型光电探测器研究进展[J]. 北京工业大学学报, 2020, 46(10): 1149-1166.
ZHANG Y Z, LI S Y, CHEN X Q. Recent progress of two-dimensional material photodetectors based on photoelectronic conversion[J]. J. Beijing Univ. Technol., 2020, 46(10): 1149-1166. (in Chinese)
韩军凯, 冯奕钰, 李瑀, 等. 刺激响应型石墨烯材料的研究新进展[J]. 功能高分子学报, 2019, 32(4): 411-420.
HAN J K, FENG Y Y, LI Y, et al. Recent research progress in stimuli-responsive graphene materials[J]. J. Funct. Polym., 2019, 32(4): 411-420. (in Chinese)
LIU J, LIANG Q, ZHAO R, et al. Application of organic-graphene hybrids in high performance photodetectors[J]. Mater. Chem. Front., 2020, 4(2): 354-368.
GUERRERO-BERMEA C, RAJUKUMAR L P, DASGUPTA A, et al. Two-dimensional and three-dimensional hybrid assemblies based on graphene oxide and other layered structures:a carbon science perspective[J]. Carbon, 2017, 125: 437-453.
林源为, 郭雪峰. 石墨烯表界面化学修饰及其功能调控[J]. 化学学报, 2014, 72(3): 277-288.
LIN Y W, GUO X F. Chemical modification of graphene and its applications[J]. Acta Chim. Sinica, 2014, 72(3): 277-288. (in Chinese)
周琳, 张黎明, 廖磊, 等. 石墨烯的光化学修饰方法[J]. 化学学报, 2014, 72(3): 289-300.
ZHOU L, ZHANG L M, LIAO L, et al. Photochemical modification of graphene[J]. Acta Chim. Sinica, 2014, 72(3): 289-300. (in Chinese)
张芸秋, 梁勇明, 周建新. 石墨烯掺杂的研究进展[J]. 化学学报, 2014, 72(3): 367-377.
ZHANG Y Q, LIANG Y M, ZHOU J X. Recent progress of graphene doping[J]. Acta Chim. Sinica, 2014, 72(3): 367-377. (in Chinese)
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
AVOURIS P, CHEN Z H, PEREBEINOS V. Carbon-based electronics[J]. Nat. Nanotechnol., 2007, 2(10): 605-615.
GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nat. Mater., 2007, 6(3): 183-191.
XIA F N, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nat. Nanotechnol., 2009, 4(12): 839-843.
MUELLER T, XIA F N, AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nat. Photonics, 2010, 4(5): 297-301.
张伟娜, 何伟, 张新荔. 石墨烯的制备方法及其应用特性[J]. 化工新型材料, 2010, 38(S1): 15-18.
ZHANG W N, HE W, ZHANG X L. Progress in synthese, property and application of graphene[J]. New Chem. Mater., 2010, 38(S1): 15-18. (in Chinese)
NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.
ZHANG W X, HUANG Z S, ZHANG W L, et al. Two-dimensional semiconductors with possible high room temperature mobility[J]. Nano Res., 2014, 7(12): 1731-1737.
EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett., 2011, 11(12): 5111-5116.
ZHANG C D, LIAN J C, YI W, et al. Surface structures of black phosphorus investigated with scanning tunneling microscopy[J]. J. Phys. Chem. C, 2009, 113(43): 18823-18826.
LIU H, NEAL A T, ZHU Z, et al. Phosphorene:an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
BRIDGMAN P W. Two new modifications of phosphorus[J]. J. Am. Chem. Soc., 1914, 36(7): 1344-1363.
ZHU Y, XIE Z J, LI J F, et al. From phosphorus to phosphorene:applications in disease theranostics[J]. Coordin. Chem. Rev., 2021, 446: 214110-1-16.
袁振洲, 刘丹敏, 田楠, 等. 二维黑磷的结构、制备和性能[J]. 化学学报, 2016, 74(6): 488-497.
YUAN Z Z, LIU D M, TIAN N, et al. Structure, preparation and properties of phosphorene[J]. Acta Chim. Sinica, 2016, 74(6): 488-497. (in Chinese)
PENG X H, WEI Q, COPPLE A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene[J]. Phys. Rev. B, 2014, 90(8): 085402-1-10.
LIU H, NEAL A T, ZHU Z, et al. Phosphorene:an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nat. Commun., 2014, 5: 4475-1-7.
WANG X M, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nat. Nanotechnol., 2015, 10(6): 517-521.
LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nat. Nanotechnol., 2014, 9(5): 372-377.
LIU Y, RUDEN P P. Temperature-dependent anisotropic charge-carrier mobility limited by ionized impurity scattering in thin-layer black phosphorus[J]. Phys. Rev. B, 2017, 95(16): 165446-1-8.
冯凯, 冯琳, 李国辉, 等. 黑磷二维材料制备及其光电子器件研究进展[J]. 发光学报, 2021, 42(11): 1686-1700.
FENG K, FENG L, LI G H, et al. Research progress on fabrication of thin black phosphorus materials and its optoelectronic devices[J]. Chin. J. Lumin., 2021, 42(11): 1686-1700. (in Chinese)
万静. 有机/无机杂化钙钛矿(RNH3)2(CH3NH3)m-1Pbm http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28020322&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28020325&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28020329&type=结构及光电性能的研究[D]. 杭州: 浙江理工大学, 2012.
WAN J. Structure and Optoelectrical Properties of Organic/Inorganic Hybrid Perovskite (RNH3)2(CH3NH3)m-1PbmI3m+1[D]. Hangzhou: Zhejiang Sci-Tech University, 2012. (in Chinese)
洪茂椿. 无机-有机复合聚合物:材料研究的一个新领域[J]. 无机化学学报, 2002, 18(1): 24-26.
HONG M C. Inorganic and organic hybride polymers:a new opening for materials research[J]. Chin. J. Inorg. Chem., 2002, 18(1): 24-26. (in Chinese)
HE T W, JIANG Y Z, XING X Y, et al. Structured perovskite light absorbers for efficient and stable photovoltaics[J]. Adv. Mater., 2020, 32(26): 1903937-1-17.
YIN J B, TAN Z J, HONG H, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals[J]. Nat. Commun., 2018, 9(1): 3311-1-7.
WU J X, YUAN H T, MENG M M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se[J]. Nat. Nanotechnol., 2017, 12(6): 530-534.
CHEN Y F, MA W L, TAN C W, et al. Broadband Bi2O2Se photodetectors from infrared to terahertz[J]. Adv. Funct. Mater., 2021, 31(14): 2009554-1-9.
YANG J, QUHE R G, LI Q H, et al. Sub 10 nm bilayer Bi2O2Se transistors[J]. Adv. Electron. Mater., 2019, 5(3): 1800720-1-10.
MAESO D, CASTELLANOS-GOMEZ A, AGRAIT N, et al. Fast yet quantum-efficient few-layer vertical MoS2 photodetectors[J]. Adv. Electron. Mater., 2019, 5(7): 1900141-1-6.
XU Y, ALI A, SHEHZAD K, et al. Solvent-based soft-patterning of graphene lateral heterostructures for broadband high-speed metal-semiconductor-metal photodetectors[J]. Adv. Mater. Technol., 2017, 2(2): 1600241-1-8.
HAN S G, YAO Y P, LIU X T, et al. Highly oriented thin films of 2D ruddlesden-popper hybrid perovskite toward superfast response photodetectors[J]. Small, 2019, 15(39): 1901194-1-6.
KHADKA S, WICKRAMASINGHE T E, LINDQUIST M, et al. As-grown two-dimensional MoS2 based photodetectors with naturally formed contacts[J]. Appl. Phys. Lett., 2017, 110(26): 261109-1-5.
SCHALL D, NEUMAIER D, MOHSIN M, et al. 50 Gbit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems[J]. ACS Photon., 2014, 1(9): 781-784.
CHEN Y F, MA W L, TAN C W, et al. Broadband Bi2O2Se photodetectors from infrared to terahertz[J]. Adv. Funct. Mater., 2021, 31(14): 2009554-1-9.
GAN X T, SHIUE R J, GAO Y D, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nat. Photonics, 2013, 7(11): 883-887.
TAO L, CHEN Z F, LI X M, et al. Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity[J]. npj 2D Mater. Appl., 2017, 1(1): 19-1-8.
XU Z Y, LI Y B, LIU X T, et al. Highly sensitive and ultrafast responding array photodetector based on a newly tailored 2D lead iodide perovskite crystal[J]. Adv. Opt. Mater., 2019, 7(11): 1900308-1-7.
URICH A, UNTERRAINER K, MUELLER T. Intrinsic response time of graphene photodetectors[J]. Nano Lett., 2011, 11(7): 2804-2808.
WANG H N, ZHANG C J, CHAN W M, et al. Ultrafast response of monolayer molybdenum disulfide photodetectors[J]. Nat. Commun., 2015, 6: 8831-1-6.
YOUNGBLOOD N, LI M. Ultrafast photocurrent measurements of a black phosphorus photodetector[J]. Appl. Phys. Lett., 2017, 110(5): 051102-1-5.
CHEN Z F, LI X M, WANG J Q, et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity[J]. ACS Nano, 2017, 11(1): 430-437.
HU M, YAN Y C, HUANG K, et al. Performance improvement of graphene/silicon photodetectors using high work function metal nanoparticles with plasma effect[J]. Adv. Opt. Mater., 2018, 6(9): 1701243-1-7.
MA P, SALAMIN Y, BAEUERLE B, et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size[J]. ACS Photon., 2019, 6(1): 154-161.
DING Y H, CHENG Z, ZHU X L, et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz[J]. Nanophotonics, 2020, 9(2): 317-325.
0
Views
628
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution