浏览全部资源
扫码关注微信
1.中国科学院理化技术研究所 光化学转换与功能材料重点实验室,北京 100190
2.中国科学院大学 未来技术学院,北京 100049
3.南京大学医学院附属鼓楼医院 泌尿外科(南京大学泌尿外科学研究所),江苏 南京 210008
[ "南福春(1992-),男,山东潍坊人,博士研究生,2017年于青岛科技大学获得硕士学位,主要从事新型碳纳米材料在肿瘤诊疗中的研究。E-mail: nanfuchun@mail.ipc.ac.cn" ]
[ "葛介超(1970-),男,山东临沂人,博士,研究员,2008年于山东师范大学获得博士学位,主要从事新型光响应纳米材料的设计及其在抗肿瘤、病毒、细菌、炎症或创伤修复等领域应用的研究。E-mail: jchge2010@mail.ipc.ac.cn" ]
[ "郭宏骞(1965-),男,吉林长春人,博士,教授,1999年于北京大学获得博士学位,主要从事泌尿生殖系肿瘤、肾移植、微创泌尿外科的治疗研究。E-mail: dr.ghq@nju.edu.cn" ]
Published:01 April 2022,
Received:14 January 2022,
Revised:30 January 2022,
移动端阅览
FU-CHUN NAN, YANG YANG, XIAO-ZHI ZHAO, et al. Orthotopic Bladder Tumor Targeted Carbon Dots for Fluorescence Imaging-guided Phototherapy. [J]. 发光学报, 2022, 43(4): 608-619.
FU-CHUN NAN, YANG YANG, XIAO-ZHI ZHAO, et al. Orthotopic Bladder Tumor Targeted Carbon Dots for Fluorescence Imaging-guided Phototherapy. [J]. 发光学报, 2022, 43(4): 608-619. DOI: 10.37188/CJL.20220017.
膀胱癌是泌尿系统中最常见的肿瘤之一。目前,化疗与手术切除等治疗手段不能有效治愈该肿瘤,并且上述两种治疗方式会产生副作用,降低患者的生活质量。光疗则为膀胱癌提供了一种新的治疗手段。在本工作中,以靶向膀胱癌细胞的小肽PLZ4修饰多功能碳点,得到了兼具靶向膀胱癌细胞及光动力/光热治疗功能的PLZ-4碳点(PCDs)。细胞实验表明该PCDs能够用于膀胱癌细胞靶向成像,并且在635 nm激光照射下,能高效杀灭膀胱癌细胞。活体实验表明经过尾静脉注射后,PCDs能够有效地聚集在原位膀胱癌处,在635 nm激光照射下,原位膀胱癌能够被完全清除,表明该PCDs在荧光成像介导的光动力/光热治疗原位膀胱癌中有潜在的应用价值。
Bladder cancer has become one of the most frequent malignant tumors in the urinary system. Chemotherapy and radical cystectomy could not effectively cure this illness and even lead to side effects and low-quality life
which seriously threaten the lives of patients. Phototherapy provides a new method for bladder cancer treatment. Here
multifunctional carbon dots theranostics was developed and modified by a bladder cancer-specific peptide(PLZ4). PLZ4-carbon dots(PCDs) integrate targeted delivery
photodynamic therapy(PDT)
and photothermal therapy(PTT) in one procedure.
In vitro
fluorescence imaging revealed that PCDs tend to aggregate in tumor cells than in normal cells
thus allowing them to effectively ablate MB-49 bladder cancer cells under a 635 nm laser.
In vivo
biodistribution showed that the PCDs specifically accumulated in bladder cancer tissues but exhibited negligible fluorescence in normal bladder tissues. After combined PDT/PTT
the orthotopic bladder tumor can be completely killed
thereby proving that PCDs have a potential as a candidate for bladder cancer treatment.
碳点光疗原位膀胱癌肿瘤靶向治疗
carbon dotsphototherapyorthotopic bladder cancertargeted tumor therapy
ANTONI S, FERLAY J, SOERJOMATARAM I, et al. Bladder cancer incidence and mortality: a global overview and recent trends [J]. Eur. Urol., 2017, 71(1):96-108.
RICHTERS A, ABEN K K H, KIEMENEY L A L M. The global burden of urinary bladder cancer:an update [J]. World J. Urol., 2020, 38(8):1895-1904
BABJUK M, BURGER M, ZIGEUNER R, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder:update 2013 [J]. Eur. Urol., 2013, 64(4):639-653.
ABDOLLAH F, GANDAGLIA G, THURET R, et al. Incidence,survival and mortality rates of stage-specific bladder cancer in United States:a trend analysis [J]. Cancer Epidemiol., 2013, 37(3):219-225.
MARI A, CAMPI R, TELLINI R, et al. Patterns and predictors of recurrence after open radical cystectomy for bladder cancer:a comprehensive review of the literature [J]. World J. Urol., 2018, 36(2):157-170.
FROEHNER M, BRAUSI M A, HERR H W, et al. Complications following radical cystectomy for bladder cancer in the elderly [J]. Eur. Urol., 2009, 56(3):443-454.
HAUTMANN R E, DE PETRICONI R C, PFEIFFER C, et al. Radical cystectomy for urothelial carcinoma of the bladder without neoadjuvant or adjuvant therapy:long-term results in 1 100 patients [J]. Eur. Urol., 2012, 61(5):1039-1047.
LIM C, MOON J, SIM T, et al. A nano-complex system to overcome antagonistic photo-chemo combination cancer therapy [J]. J. Control. Release, 2019, 295:164-173.
AGOSTINIS P, BERG K, CENGEL K A, et al. Photodynamic therapy of cancer:an update [J]. CA: Cancer J. Clin., 2011, 61(4):250-281.
MOORE C M, PENDSE D, EMBERTON M. Photodynamic therapy for prostate cancer-a review of current status and future promise [J]. Nat. Clin. Pract. Urol., 2009, 6(1):18-30.
刘庄, 冯良珠. 光功能纳米材料与肿瘤光学治疗展望 [J]. 发光学报, 2020, 41(11):1339-1342.
LIU Z, FENG L Z. Perspectives on photo-functional nanomaterials and cancer phototherapy [J]. Chin. J. Lumin., 2020, 41(11):1339-1342. (in Chinese)
SONG Y C, WANG L, XIE Z G. Metal-organic frameworks for photodynamic therapy:emerging synergistic cancer therapy [J]. Biotechnol. J., 2021, 16(2):1900382.
FAN W P, HUANG P, CHEN X Y. Overcoming the Achilles' heel of photodynamic therapy [J]. Chem. Soc. Rev., 2016, 45(23):6488-6519.
CALORI I R, BI H, TEDESCO A C. Expanding the limits of photodynamic therapy:the design of organelles and hypoxia-targeting nanomaterials for enhanced photokilling of cancer [J]. ACS Appl. Bio. Mater., 2021, 4(1):195-228.
CHIN W W L, LAU W K O, HENG P W S, et al. Fluorescence imaging and phototoxicity effects of new formulation of chlorin e6-polyvinylpyrrolidone [J]. J. Photochem. Photobiol. B: Biol., 2006, 84(2):103-110.
INOUE K, ANAI S, FUJIMOTO K, et al. Oral 5-aminolevulinic acid mediated photodynamic diagnosis using fluorescence cystoscopy for non-muscle-invasive bladder cancer:a randomized,double-blind,multicentre phase Ⅱ/Ⅲ study [J]. Photodiagnosis Photodyn. Ther., 2015, 12(2):193-200.
BELLNIER D A, HENDERSON B W, PANDEY R K, et al. Murine pharmacokinetics and antitumor efficacy of the photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a [J]. J. Photochem. Photobiol. B: Biol., 1993, 20(1):55-61.
EL-SAWY H S, AL-ABD A M, AHMED T A, et al. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu:past,present,and future perspectives [J]. ACS Nano, 2018, 12(11):10636-10664.
WANG D, XUE B, OHULCHANSKYY T Y, et al. Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy [J]. Biomaterials, 2020, 251:120088-1-14.
RAJENDRAKUMAR S K, UTHAMAN S, CHO C S, et al. Nanoparticle-based phototriggered cancer immunotherapy and its domino effect in the tumor microenvironment [J]. Biomacromolecules, 2018, 19(6):1869-1887.
MAHAJAN K D, FAN Q R, DORCÉNA J, et al. Magnetic quantum dots in biotechnology—synthesis and applications [J]. Biotechnol. J., 2013, 8(12):1424-1434.
VANKAYALA R, HWANG K C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines:an emerging paradigm for cancer treatment [J]. Adv. Mater., 2018, 30(23):1706320-1-27.
HUANG Y, QIU F, SHEN L Y, et al. Combining two-photon-activated fluorescence resonance energy transfer and near-infrared photothermal effect of unimolecular micelles for enhanced photodynamic therapy [J]. ACS Nano, 2016, 10(11):10489-10499.
FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy [J]. Chem. Rev., 2017, 117(22):13566-13638.
LI D, JING P T, SUN L H, et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots [J]. Adv. Mater., 2018, 30(13):1705913-1-8.
LU S Y, SUI L Z, LIU J J, et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence [J]. Adv. Mater., 2017, 29(15):1603443-1-6.
HUA X W, BAO Y W, WU F G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery [J]. ACS Appl. Mater. Interfaces, 2018, 10(13):10664-10677.
WANG X W, SUN G Z, LI N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy [J]. Chem. Soc. Rev., 2016, 45(8):2239-2262.
YANG Y, ZHU W J, SHI B F, et al. Construction of a thermo-responsive polymer brush decorated Fe3O4@catechol-formaldehyde resin core-shell nanosphere stabilized carbon dots/PdNP nanohybrid and its application as an efficient catalyst [J]. J. Mater. Chem. A, 2020, 8(7):4017-4029.
GE J C, LAN M H, LIU W M, et al. Graphene quantum dots as efficient,metal-free,visible-light-active photocatalysts [J]. Sci. China Mater., 2016, 59(1):12-19.
JIA Q Y, GE J C, LIU W M, et al. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy [J]. Adv. Mater., 2018, 30(13):1706090-1-10.
HUA X W, BAO Y W, CHEN Z, et al. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics [J]. Nanoscale, 2017, 9(30):10948-10960.
南福春, 薛小矿, 葛介超, 等. 红光/近红外光响应碳点在肿瘤治疗中的应用进展 [J]. 发光学报, 2021, 42(8):1155-1171.
NAN F C, XUE X K, GE J C, et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy [J]. Chin. J. Lumin., 2021, 42(8):1155-1171. (in Chinese)
CHEN S Q, JIA Q Y, ZHENG X L, et al. PEGylated carbon dot/MnO2 nanohybrid:a new pH/H2O2-driven,turn-on cancer nanotheranostics [J]. Sci. China Mater., 2018, 61(10):1325-1338.
CHUNG S, REVIA R A, ZHANG M Q. Graphene quantum dots and their applications in bioimaging,biosensing,and therapy [J]. Adv. Mater., 2021, 33(22):1904362-1-26.
GE J C, LAN M H, ZHOU B J, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation [J]. Nat. Commun., 2014, 5:4596-1-8.
GE J C, JIA Q Y, LIU W M, et al. Carbon dots with intrinsic theranostic properties for bioimaging,red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo [J]. Adv. Healthc. Mater., 2016, 5(6):665-675.
JIA Q Y, ZHENG X L, GE J C, et al. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer [J]. J. Colloid Interface Sci., 2018, 526:302-311.
GUO X L, DING Z Y, DENG S M, et al. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies [J]. Carbon, 2018, 134:519-530.
LIN T Y, LI Y P, ZHANG H Y, et al. Tumor-targeting multifunctional micelles for imaging and chemotherapy of advanced bladder cancer [J]. Nanomedicine, 2013, 8(8):1239-1251.
LIN T Y, LI Y P, LIU Q Q, et al. Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer [J]. Biomaterials, 2016, 104:339-351.
BLACK P C, SHETTY A, BROWN G A, et al. Validating bladder cancer xenograft bioluminescence with magnetic resonance imaging:the significance of hypoxia and necrosis [J]. BJU Int., 2010, 106(11):1799-1804.
LIN T S, YUAN A, ZHAO X Z, et al. Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer [J]. Acta Biomater., 2017, 53:427-438.
ZHANG H Y, AINA O H, LAM K S, et al. Identification of a bladder cancer-specific ligand using a combinatorial chemistry approach [J]. Urol. Oncol., 2012, 30(5):635-645.
LIU X L, JIANG H, YE J, et al. Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence,magnetic resonance,and computed tomography triple-modal in vivo bioimaging [J]. Adv. Funct. Mater., 2016, 26(47):8694-8706.
CALLMANN C E, LEGUYADER C L M, BURTON S T, et al. Antitumor activity of 1,18-octadecanedioic acid-paclitaxel complexed with human serum albumin [J]. J. Am. Chem. Soc., 2019, 141(30):11765-11769.
SUN S, CHEN J Q, JIANG K, et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-nir-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power [J]. ACS Appl. Mater. Interfaces, 2019, 11(6):5791-5803.
BRUNETTI G, SOLER-ROVIRA P, MATARRESE F, et al. Composition and structural characteristics of humified fractions during the co-composting process of spent mushroom substrate and wheat straw [J]. J. Agric. Food Chem., 2009, 57(22):10859-10865.
LIM Y T, NOH Y W, HAN J H, et al. Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells [J]. Small, 2008, 4(10):1640-1645.
0
Views
382
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution