浏览全部资源
扫码关注微信
1.山西能源学院 能源与动力工程系,山西 晋中 030600
2.长春理工大学 材料科学与工程学院,吉林 长春 130022
[ "王玲玲(1966-),女,山西兴县人,博士,正高级工程师,2017年于长春理工大学获得博士学位,主要从事大口径光纤锥及光纤传像器件的机理、制备及性能的研究。E-mail: ccoewll@163.com" ]
[ "周德春(1964-),男,吉林长春人,博士,教授,博士生导师,2011年于长春理工大学获得博士学位,主要从事光纤材料与器件的机理、制备、激光性能及应用的研究。E-mail: paper_paper_2017@126.com" ]
Published:01 April 2022,
Received:07 January 2022,
Revised:28 January 2022,
移动端阅览
LING-LING WANG, PENG-FEI XU, DE-CHUN ZHOU. 1.5 μm Laser Properties of Large Mode Field Er3+/Yb3+ Co-doped Microstructured Fiber Cone. [J]. 发光学报, 2022, 43(4): 509-517.
LING-LING WANG, PENG-FEI XU, DE-CHUN ZHOU. 1.5 μm Laser Properties of Large Mode Field Er3+/Yb3+ Co-doped Microstructured Fiber Cone. [J]. 发光学报, 2022, 43(4): 509-517. DOI: 10.37188/CJL.20220010.
采用全矢量有限元法设计了一种大模场双包层微结构光纤及锥形波导结构。采用复丝拉制方法制备了成分为45Bi
2
O
3
-29GeO
2
-15Ga
2
O
3
-10Na
2
O-1CeO
2
的大模场双包层微结构光纤,纤芯直径为70 μm,内包层的占空比为0.25,模场面积约为3 014.8 μm
2
。采用熔融拉锥技术制备了纤芯直径为17.5 μm、有效模场面积为206.47 μm
2
的锥形光纤。在980 nm泵浦下研究了微结构光纤及其锥体的激光特性。结果表明,拉锥后微结构光纤的激发光谱中心波长由1 550.2 nm向短波漂移至1 546.9 nm,而输出激光光束质量因子
M
2
由3.45±0.03显著减少至1.16±0.01。拉锥前后的斜率效率分别达到10.29 %和9.70 %。研究结果表明,拉锥可有效改善大模场双包层有序微结构光纤的激光输出模式,拉锥后的激光输出具有良好的单模特性。该项技术研究结果为大模场、高功率的激光光纤材料制备提供了新的技术途径。
The waveguide structures of large-mode-field double-cladding microstructured optical fiber and fiber cone were designed by the full vector finite element method. The microstructured optical fiber with the composition of 45Bi
2
O
3
-29GeO
2
-15Ga
2
O
3
-10Na
2
O-1CeO
2
has been prepared by the cluster drawing method. Moreover
the fiber's core diameter is 70 μm
the inner cladding duty cycle is 0.25
and the mode field area is about 3 014.8 μm
2
. The fiber cone with a core diameter of 17.5 μm and an effective mode field area of 206.47 μm
2
was prepared by using the fused biconical taper technology. The laser characteristics of the fiber and its cone were studied under 980 nm LD pumped. The results show that the central wavelength of the excitation spectrum of fiber drifted from 1 550.2 nm to 1 546.9 nm after tapering. And the output laser beam quality factor
M
2
of fiber and fiber cone decreased significantly from 3.45 ± 0.03 to 1.16 ± 0.01. The slope efficiency of fiber and fiber cone reaches 10.29% and 9.70%
respectively. The results indicate that the taper can effectively improve the laser output mode of microstructured optical fiber
and the laser output of fiber cone has good single model characteristics. Fiber taper technology provides a new approach for preparing large-mode-field and high-power laser fiber materials.
Er3+/Yb3+共掺微结构光纤光锥模场1.5 μm激光特性
Er3+/Yb3+ co-dopedmicrostructure fiber tapermode field1.5 μm laser characteristics
DOBLER J T, HARRISON F W, BROWELL E V, et al. Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar [J]. Appl. Opt., 2013, 52(12):2874-2892.
LADACI A, GIRARD S, MESCIA L, et al. Radiation hardened high-power Er3+/Yb3+-codoped fiber amplifiers for free-space optical communications [J]. Opt. Lett., 2018, 43(13):3049-3052.
CHEN Y J, LIN Y F, YANG Z M, et al. Eye-safe 1.55 μm Er ∶Yb ∶YAl3(BO3)4 microchip laser [J]. OSA Continuum., 2018, 2(1):142-150.
ZHOU D C, JIN D Y, LAN Z D, et al. Preparation of Er3+/Yb3+ co-doped citrate microstructure fiber of large mode field and its 3.0 μm laser performance [J]. J. Am. Ceram. Soc., 2019, 102(4):1686-1693.
ZHANG J, FROMZEL V, DUBINSKII M. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency [J]. Opt. Express, 2011, 19(6):5574-5578.
CHEN Z M, TU X, ZHAO J J, et al. An erbium-doped fiber whispering-gallery-mode microcavity laser [J]. IEEE. Photonic Technol. Lett., 2019, 31(20):1650-1653.
WANG W, XU H D, YANG Q H, et al. Large mode area microstructured fiber supporting 56 super-OAM modes [J]. Opt. Express, 2019, 27(20):27991-28008.
PRUDENZANO F, MESCIA L, ALLEGRETTI L, et al. Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber [J]. Opt. Mater., 2009, 31(9):1292-1295.
ZHU Z M, BROWN T G. Full-vectorial finite-difference analysis of microstructured optical fibers [J]. Opt. Express, 2002, 10(17):853-864.
FRANCO M A R, SERRAO V A, SIRCILLI F. Microstructured optical fiber for residual dispersion compensation over S +C+L+ U wavelength bands [J]. IEEE Photonic Technol. Lett., 2008, 20(9):751-753.
TOWN G E, YUAN W, MCCOSKER R, et al. Microstructured optical fiber refractive index sensor [J]. Opt. Lett., 2010, 35(6):856-858.
MÄGI E C, STEINVURZEL P, EGGLETON B J. Tapered photonic crystal fibers [J]. Opt. Express, 2004, 12(5):776-784.
LIMPERT J, SCHMIDT O, ROTHHARDT J, et al. Extended single-mode photonic crystal fiber lasers [J]. Opt. Express, 2006, 14(7):2715-2720.
SCHMIDT O, ROTHHARDT J, EIDAM T, et al. Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber [J]. Opt. Express, 2008, 16(6):3918-3923.
KUMAR A, SAINI T S, NAIK K D, et al. Large-mode-area single-polarization single-mode photonic crystal fiber:design and analysis [J]. Appl. Opt., 2016, 55(19):4995-5000.
LI L, SCHÜLZGEN A, TEMYANKO V L, et al. Short-length microstructured phosphate glass fiber lasers with large mode areas [J]. Opt. Lett., 2005, 30(10):1141-1143.
SAGHAEI H. Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation [J]. Appl. Opt., 2018, 57(20):5591-5598.
FUJIWARA M, TOUBARU K, NODA T, et al. Highly efficient coupling of photons from nanoemitters into single-mode optical fibers [J]. Nano Lett., 2011, 11(10):4362-4365.
PETERSEN C R, ENGELSHOLM R D, MARKOS C, et al. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers [J]. Opt. Express, 2017, 25(13):15336-15348.
MAO D, HE Z W, LU H, et al. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers [J]. Opt. Lett., 2018, 43(7):1590-1593.
BAKER C C, FRIEBELE E J, BURDETT A A, et al. Nanoparticle doping for high power fiber lasers at eye-safer wavelengths [J]. Opt. Express, 2017, 25(12):13903-13915.
EIDAM T, WIRTH C, JAUREGUI C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J]. Opt. Express, 2011, 19(14):13218-13224.
ZERVAS M N, CODEMARD C A. High power fiber lasers:a review [J]. IEEE J. Sel. Top. Quantum Electron., 2014, 20(5):219-241.
PENG K, ZHAN H, NI L, et al. Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality [J]. Appl. Opt., 2016, 55(35):10133-10137.
JAUREGUI C, LIMPERT J, TÜNNERMANN A. High-power fibre lasers [J]. Nat. Photonics, 2013, 7(11):861-867.
RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers:current status and future perspectives [Invited] [J]. J. Opt. Soc. Am. B, 2010, 27(11):B63-B92.
SONG X Y, JIN D Y, ZHOU D C, et al. Er3+/Yb3+ co-doped bismuthate glass and its large-mode-area double-cladding fiber for 1.53 μm laser [J]. J. Alloys Compd., 2021, 853:157305.
SLIMEN F B, CHEN S X, LOUSTEAU J, et al. Highly efficient-Tm3+ doped germanate large mode area single mode fiber laser [J]. Opt. Mater. Express, 2019, 9(10):4115-4125.
ROBIN C A, HARTL I, ROY V, et al. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement [C]. Proceedings of SPIE 10083, Fiber Lasers XIV: Technology and Systems, San Francisco, United States, 2017:1008314-1-6.
LIMPERT J, STUTZKI F, JANSEN F, et al. Yb-doped large-pitch fibres:effective single-mode operation based on higher-order mode delocalisation [J]. Light Sci. Appl., 2012, 1(4):e8-1-5.
KOSHIBA M. Full-vector analysis of photonic crystal fibers using the finite element method [J]. IEICE. Trans. Electronics, 2002, E85-C(4):881-888.
BIRKS T A, KNIGHT J C, RUSSELL P S J. Endlessly single-mode photonic crystal fiber [J]. Opt. Lett., 1997, 22(13):961-963.
PARK K N, LEE K S. Improved effective-index method for analysis of photonic crystal fibers [J]. Opt. Lett., 2005, 30(9):958-960.
MATSUI T, SAKAMOTO T, TSUJIKAWA K, et al. Single-mode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission [J]. J. Lightwave Technol., 2011, 29(4):511-515.
SAITOH K, TSUCHIDA Y, KOSHIBA M, et al. Endlessly single-mode holey fibers:the influence of core design [J]. Opt. Express, 2005, 13(26):10833-10839.
MORTENSEN N A. Effective area of photonic crystal fibers [J]. Opt. Express, 2002, 10(7):341-348.
ISSA N A. High numerical aperture in multimode microstructured optical fibers [J]. Appl. Opt., 2004, 43(33):6191-6197.
DUAN D W, KAVATAMANE V K, ARUMUGAM S R, et al. Tapered ultra-high numerical aperture optical fiber tip for nitrogen vacancy ensembles based endoscope in a fluidic environment [J]. Appl. Phys. Lett., 2020, 116(11):113701-1-5.
0
Views
231
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution