浏览全部资源
扫码关注微信
1.福州大学 化学学院,福建 福州 350108
2.中国科学院 福建物质结构研究所,中国科学院功能纳米结构设计与组装重点实验室,福建 福州 350002
Published:2022-03,
Received:29 December 2021,
Revised:14 January 2022,
扫 描 看 全 文
Xue-jie LYU, Jie XU, Hang LIN, et al. Research Progress on Pr3+ Doped Red Persistent Luminescent Materials. [J]. Chinese Journal of Luminescence 43(3):327-340(2022)
Xue-jie LYU, Jie XU, Hang LIN, et al. Research Progress on Pr3+ Doped Red Persistent Luminescent Materials. [J]. Chinese Journal of Luminescence 43(3):327-340(2022) DOI: 10.37188/CJL.20210414.
Pr
3+
掺杂长余辉发光材料因其稳定高效的红色持久性发光而备受关注。近年来,Pr
3+
掺杂红色长余辉发光材料的基础研究和应用探索均取得了长足的进步。本文总结了Pr
3+
离子发光特性与电荷迁移带位置的关系,概述了最近报道的发光材料体系,讨论了余辉性能的优化途径,介绍了相关材料在信息加密、交流发光二极管(AC-LED)、生物成像、应力传感等新领域的应用。最后,指出了目前Pr
3+
掺杂红色长余辉发光材料研究中仍存在的问题,并对其未来的研究方向进行了展望。
Pr
3+
doped afterglow materials have attracted much attention due to their stable and efficient red persistent luminescence. In recent years
the basic research and application exploration of Pr
3+
doped red afterglow materials have made great progress. This paper summarizes the relationship between luminescence characteristics of Pr
3+
ions and position of intervalence charge transfer band
overviews the recently reported luminescent material systems
discusses the optimization method to improve persistent luminescence performance
and introduces the burgeoning application directions of the related materials in information encryption
AC-LED
biological imaging
and stress-sensing. Finally
the existing problems in the research of Pr
3+
doped red afterglow luminescent materials are pointed out
and the future research directions of Pr
3+
doped red afterglow luminescent materials are prospected.
Pr3+离子长余辉材料发光机理掺杂
Pr3 + ionsafterglow materialsluminescence mechanismadulteration
XU J, TANABE S. Persistent luminescence instead of phosphorescence: history,mechanism,and perspective [J]. J. Lumin., 2019, 205:581-620.
LI Y, GECEVICIUS M, QIU J R. Long persistent phosphors-from fundamentals to applications [J]. Chem. Soc. Rev., 2016, 45(8):2090-2136.
VAN DEN EECKHOUT K, POELMAN D, SMET P F. Persistent luminescence in non-Eu2+-doped compounds:a review [J]. Materials (Basel), 2013, 6(7):2789-2818.
ZHUANG Y X, KATAYAMA Y, UEDA J, et al. A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors [J]. Opt. Mater., 2014, 36(11):1907-1912.
BOUTINAUD P, PINEL E, DUBOIS M, et al. UV-to-red relaxation pathways in CaTiO3∶Pr3+ [J]. J. Lumin., 2005, 111(1-2):69-80.
JIA W Y, JIA D D, RODRIGUEZ T, et al. UV excitation and trapping centers in CaTiO3∶Pr3+ [J]. J. Lumin., 2006, 119-120:13-18.
ABDUKAYUM A, YANG C X, ZHAO Q, et al. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo [J]. Anal. Chem., 2014, 86(9):4096-4101.
LI Y, LI Y Y, SHARAFUDEEN K, et al. A strategy for developing near infrared long-persistent phosphors:taking MAlO3∶Mn4+,Ge4+ (M=La,Gd) as an example [J]. J. Mater. Chem. C, 2014, 2(11):2019-2027.
LI Z J, ZHANG Y J, ZHANG H W, et al. Long-lasting phosphorescence functionalization of mesoporous silica nanospheres by CaTiO3∶Pr3+ for drug delivery [J]. Microporous Mesoporous Mater., 2013, 176:48-54.
ZHENG W X, WU H Y, JU G F, et al. Crystal field modulation-control,bandgap engineering and shallow/deep traps tailoring-guided design of a color-tunable long-persistent phosphor (Ca,Sr)Ga4O7∶Mn2+,Bi3+ [J]. Dalton Trans., 2019, 48(1):253-265.
PEDROSO C C S, CARVALHO J M, RODRIGUES L C V, et al. Rapid and energy-saving microwave-assisted solid-state synthesis of Pr3+-,Eu3+-,or Tb3+-doped Lu2O3 persistent luminescence materials [J]. ACS Appl. Mater. Interfaces, 2016, 8(30):19593-19604.
QU B Y, ZHANG B, WANG L, et al. Mechanistic study of the persistent luminescence of CaAl2O4∶Eu,Nd [J]. Chem. Mater., 2015, 27(6):2195-2202.
LIEPINA V, MILLERS D, SMITS K. Tunneling luminescence in long lasting afterglow of SrAl2O4∶Eu,Dy [J]. J. Lumin., 2017, 185:151-154.
杨志平, 刘冲, 郭智, 等. 红色Y2O2S∶Eu3+磷光材料的沉淀法制备和发光性能研究 [J]. 河北大学学报(自然科学版), 2004, 24(6):585-588.
YANG Z P, LIU C, GUO Z, et al. Preparation and characterization of Y2O2S∶Eu3+ phosphors by co-precipitation method [J]. J. Hebei Univ. (Nat. Sci. Ed.), 2004, 24(6):585-588. (in Chinese)
刘冲, 杨志平, 李旭, 等. 燃烧法制备(Ca1-xSrx)S∶Eu2+红色荧光粉的发光性能研究 [J]. 河北大学学报(自然科学版), 2008, 28(5):466-470.
LIU C, YANG Z P, LI X, et al. Study on the luminescent properties of (Ca1-xSrx)S∶Eu2+ phosphor formed by combustion [J]. J. Hebei Univ. (Nat. Sci. Ed.), 2008, 28(5):466-470. (in Chinese)
KOJIMA Y, AOYAGI K, YASUE T. Afterglow mechanism and thermoluminescence of red-emitting CaS∶Eu2+,Pr3+ phosphor with incorporated Li+ ion upon visible light irradiation [J]. J. Lumin., 2007, 126(2):319-322.
KOJIMA Y, TAKAHASHI A, UMEGAKI T. Synthesis of orange-red-emitting Eu2+,Pr3+ codoped SrS long afterglow phosphor [J]. J. Lumin., 2014, 146:42-45.
WU J P, NEWMAN D, VINEY I V F. Study on relationship of luminescence in CaS∶Eu,Sm and dopants concentration [J]. J. Lumin., 2002, 99(3):237-245.
GUO C F, CHU B L, SU Q. Improving the stability of alkaline earth sulfide-based phosphors [J]. Appl. Surf. Sci., 2004, 225(1-4):198-203.
WU J P, NEWMAN D, VINEY I V F. Structure-dependent photo- and infrared-stimulated luminescence of Eu2+ and Sm3+ in CaS∶Eu,Sm [J]. J. Phys. D:Appl. Phys., 2002, 35(10):968-972.
JIA D D. Enhancement of long-persistence by Ce co-doping in CaS∶Eu2+,Tm3+ red phosphor [J]. J. Electrochem. Soc., 2006, 153(11):H198-H201.
SHEN Y Q, QIU K H, ZHANG W T, et al. Red-emitting enhancement of Bi4Si3O12∶Sm3+ phosphor by Pr3+ co-doping for white LEDs application [J]. Ceram. Int., 2017, 43(12):9158-9163.
李金银, 彭志雄, 余丽萍, 等. Si,Lu掺杂Ca0.8Zn0.2TiO3∶Pr3+荧光粉的光学性能改善 [J]. 发光学报, 2018, 39(5):643-652.
LI J Y, PENG Z X, YU L P, et al. Improved luminescence properties of Ca0.8Zn0.2TiO3∶Pr3+ phosphors doped with Si and Lu [J]. Chin. J. Lumin., 2018, 39(5):643-652. (in Chinese)
TANG W, SUN Y, YU M, et al. White-light-emitting properties of SrTiO3∶Pr3+ nanoparticles [J]. RSC Adv., 2015, 5(35):27491-27495.
YU L, HAO J G, LI W, et al. Strong red emission and enhanced electrical properties in Pr-doped SrBi4Ti4O15 multifunctional ceramics [J]. J. Mater. Sci.:Mater. Electron., 2019, 30(19):17890-17898.
MA S Z, FENG W L, CHEN R, et al. KSr4(BO3)3∶Pr3+:a new red-emitting phosphor for blue-pumped white light-emitting diodes [J]. J. Alloys Compd., 2017, 700:49-53.
LI H M, PANG R, LUO Y Q, et al. Commendable Pr3+-activated Ba2Ga2GeO7 phosphor with high-brightness white long-persistent luminescence [J]. J. Mater. Chem. C, 2019, 7(22):6698-6705.
PINEL E, BOUTINAUD P, MAHIOU R. What makes the luminescence of Pr3+different in CaTiO3 and CaZrO3 [J]. J. Alloys Compd., 2004, 380(1-2):225-229.
BOUTINAUD P, SARAKHA L, CAVALLI E, et al. About red afterglow in Pr3+doped titanate perovskites [J]. J. Phys. D:Appl. Phys., 2009, 42(4):045106-1-7.
王洪杰, 马腾飞, 张粟, 等. Pr3+离子激活的新型长余辉发光材料GdY1.46Lu0.5Ga3Al2O12∶0.04Pr3+的发光性质研究 [J]. 化工新型材料, 2017, 45(4):151-153.
WANG H J, MA T F, ZHANG S, et al. Investigation on luminescence property of a novel long afterglow phosphor GdY1.46-Lu0.5Ga3Al2O12∶0.04Pr3+ [J]. New Chem. Mater., 2017, 45(4):151-153. (in Chinese)
BOUTINAUD P, PUTAJ P, MAHIOU R, et al. Quenching of lanthanide emission by intervalence charge transfer in crystals containing closed shell transition metal ions [J]. Spectrosc. Lett., 2007, 40(2):209-220.
BOUTINAUD P, CAVALLI E, BETTINELLI M. Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+ -doped YNbO4 and CaNb2O6 [J]. J. Phys.:Condens. Matter, 2007, 19(38):386230-1-11.
BOUTINAUD P, PINEL E, OUBAHA M, et al. Making red emitting phosphors with Pr3+ [J]. Opt. Mater., 2006, 28(1-2):9-13.
LIU Z W, LIU Y L, ZHANG J X, et al. Long afterglow in Pr3+ and Li+ co-doped CaZrO3 [J]. Opt. Commun., 2005, 251(4-6):388-392.
CHU M H, JIANG D P, ZHAO C J, et al. Long-lasting phosphorescence properties of pyrochlore La2Ti2O7∶Pr3+ phosphor [J]. Chin. Phys. Lett., 2010, 27:4.
DIALLO P T, BOUTINAUD P, MAHIOU R, et al. Red luminescence in Pr3+-doped calcium titanates [J]. Phys. Status Solidi (a), 1997, 160(1):255-263.
BOUTINAUD P, PINEL E, MAHIOU R. Luminescence and afterglow in CaTiO3∶Pr3+ films deposited by spray pyrolysis [J]. Opt. Mater., 2008, 30(7):1033-1038.
CHEN R, GAO Y T, GAO Y M. Synthesis and luminescence properties of CaTiO3∶Pr3+,Ni2+ red phosphor [J]. Solid State Sci., 2019, 89:161-166.
WANG B, LIN H, XU J, et al. Design,preparation,and characterization of a novel red long-persistent perovskite phosphor:Ca3Ti2O7∶Pr3+ [J]. Inorg. Chem., 2015, 54(23):11299-11306.
JIANG T, ZHU Y F, ZHANG J C, et al. Multistimuli-responsive display materials to encrypt differentiated information in bright and dark fields [J]. Adv. Funct. Mater., 2019, 29(51):1906068-1-10.
LIN S P, XIONG C W, MA D C, et al. Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal [J]. J. Mater. Chem. C, 2018, 6(37):10067-10072.
LI L Y, CASTAING V, RYTZ D, et al. Tunable trap depth for persistent luminescence by cationic substitution in Pr3+∶K1-xNaxNbO3 perovskites [J]. J. Am. Ceram. Soc., 2019, 102(5):2629-2639.
LIANG Y J, LIU F, CHEN Y F, et al. Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr3+-doped persistent phosphors [J]. Dalton Trans., 2017, 46(34):11149-11153.
XIONG P X, PENG M Y, QIN K X, et al. Visible to near-infrared persistent luminescence and mechanoluminescence from Pr3+-doped LiGa5O8 for energy storage and bioimaging [J]. Adv. Opt. Mater., 2019, 7(24):1901107-1-11.
TIAN X Y, LIAN S X, JI C Y, et al. Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3∶Pr3+ red emitting phosphor [J]. J. Alloys Compd., 2019, 784:628-640.
ZHANG R J, SONG Z, HE L Z, et al. Improvement of red-emitting afterglow properties via tuning electronic structure in perovskite-type (Ca1-xNax) [Ti1-xNbx] O3∶Pr3+ compounds [J]. J. Alloys Compd., 2017, 729:663-670.
TIAN S Y, LIU B T, ZHAO L, et al. Red photo-stimulated luminescence from deep traps of BaZrGe3O9∶Pr3+ for optical imaging application [J]. J. Alloys Compd., 2019, 800:224-230.
NOTO L L, PITALE S S, GUSOWKI M A, et al. Afterglow enhancement with In3+ codoping in CaTiO3∶Pr3+ red phosphor [J]. Powder Technol., 2013, 237:141-146.
YANG L Q, CAI Z Y, YANG L Q, et al. Solid state synthesis,luminescence and afterglow enhancements of CaTiO3∶Pr3+ by Ga3+ codoping [J]. J. Lumin., 2018, 197:339-342.
LI J H, YAN J, WEN D W, et al. Advanced red phosphors for white light-emitting diodes [J]. J. Mater. Chem. C, 2016, 4(37):8611-8623.
周文, 余丽萍, 廉世勋, 等. 前驱溶液的pH值对制备Ca2Zn4Ti16O38∶Pr3+,Na+发光粉物相、形貌和发光性质的影响 [J]. 发光学报, 2010, 31(5):712-718.
ZHOU W, YU L P, LIAN S X, et al. Influence of pH value in precursor solution on the component,morphology and photoluminescence of Ca2Zn4Ti16O38∶Pr3+,Na+ phosphor [J]. Chin. J. Lumin., 2010, 31(5):712-718. (in Chinese)
YIN S Y, CHEN D H, TANG W J, et al. Synthesis of CaTiO3∶Pr,Al phosphors by sol-gel method and their luminescence properties [J]. J. Mater. Sci., 2007, 42(8):2886-2890.
夏茂, 谷智强, 刘琼, 等. 红色长余辉荧光粉Ca2Zn4Ti16O38∶Pr3+的水热辅助合成及发光性质 [J]. 无机化学学报, 2015, 31(2):253-259.
XIA M, GU Z Q, LIU Q, et al. Hydrothermal assisted synthesis and photoluminescence properties of red persistent Ca2Zn4Ti16O38∶Pr3+ phosphor [J]. Chin. J. Inorg. Chem., 2015, 31(2):253-259. (in Chinese)
YOON S, OTAL E H, MAEGLI A E, et al. Improved persistent luminescence of CaTiO3∶Pr by fluorine substitution and thermochemical treatment [J]. J. Alloys Compd., 2014, 613:338-343.
庄逸熙, 陈敦榕, 解荣军. 面向光学信息存储应用的深陷阱长余辉发光材料 [J]. 激光与光电子学进展, 2021, 58(15):1516001-1-24.
ZHUANG Y X, CHEN D R, XIE R J. Persistent luminescent materials with deep traps for optical information storage [J]. Laser Optoelectron. Prog., 2021, 58(15):1516001-1-24. (in Chinese)
LIU R S, WANG X J. Phosphor Handbook:Novel phosphors, Synthesis, and Applications [M]. 3rd ed. New York: CRC Press, 2022.
LI X S, ZHAO L T. UV or blue light excited red persistent perovskite phosphor with millisecond lifetime for use in AC-LEDs [J]. Luminescence, 2020, 35(1):138-143.
WANG L, ZHANG X, HAO Z D, et al. Interionic energy transfer in Y3Al5O12∶Ce3+,Pr3+ phosphor [J]. J. Appl. Phys., 2010, 108(9):093515-1-10.
闫宏, 宋婷, 张猛, 等. 高性能X射线影像存储12CaO·7Al2O3∶Pr3+荧光粉的微结构及光学特性 [J]. 发光学报, 2018, 39(7):895-902.
YAN H, SONG T, ZHANG M, et al. Microstructure and optical properties of 12CaO·7Al2O3∶Pr3+ phosphors for high quality X-ray imaging [J]. Chin. J. Lumin., 2018, 39(7):895-902. (in Chinese)
ABDUKAYUM A, CHEN J T, ZHAO Q, et al. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging [J]. J. Am. Chem. Soc., 2013, 135(38):14125-14133.
TU D, XU C N, YOSHIDA A, et al. LiNbO3∶Pr3+:a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence [J]. Adv. Mater., 2017, 29(22):1606914-1-4.
LI X, HU R, WANG X S, et al. Intense mechanoluminescence and photostimulated luminescence with less afterglow in Pr3+/Gd3+ co-doped LiTaO3 phosphors [J]. J. Lumin., 2021, 238:118222.
YANG X X, LIU R, XU X H, et al. Effective repeatable mechanoluminescence in heterostructured Li1-xNaxNbO3∶Pr3+ [J]. Small, 2021, 17(46):2103441.
LUO H D, BOS A J J, DORENBOS P. Controlled electron-hole trapping and detrapping process in GdAlO3 by valence band engineering [J]. J. Phys. Chem. C, 2016, 120(11):5916-5925.
0
Views
259
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution