浏览全部资源
扫码关注微信
1.郑州大学材料科学与工程学院 郑州市先进能源催化功能材料制备技术重点实验室,河南 郑州 450001
2.中国地质科学院 郑州矿产综合利用研究所,河南 郑州 450006
3.东北大学秦皇岛分校 河北省电介质与电解质功能材料重点实验室,河北 秦皇岛 066004
Published:2022-05,
Received:27 December 2021,
Revised:12 January 2022,
移动端阅览
ZHAO-WU WANG, QIAO QU, HAI-PENG JI, et al. Available Manganese-containing Chemicals and Synthesis Methods for Mn4+-activated Phosphors. [J]. Chinese journal of luminescence, 2022, 43(5): 662-675.
ZHAO-WU WANG, QIAO QU, HAI-PENG JI, et al. Available Manganese-containing Chemicals and Synthesis Methods for Mn4+-activated Phosphors. [J]. Chinese journal of luminescence, 2022, 43(5): 662-675. DOI: 10.37188/CJL.20210412.
Mn
4+
激活荧光粉可在蓝光激发下发射波长可调的红光,是当前白光发光二极管用荧光粉的研究热点之一。在制备Mn
4+
激活红光荧光粉时,有多种锰源可供选择,如K
2
MnF
6
、KMnO
4
、Mn(HPO
4
)
2
、MnCO
3
、MnO
2
、MnO、Mn(NO
3
)
2
、Mn(CH
3
COO)
2
等。本文综述了文献中在制备Mn
4+
激活氟化物、氟氧化物和氧化物基质红光荧光粉时采用的锰源,列举了相应的制备方法,并总结了采取不同锰源和制备方法对所合成荧光粉的荧光性质(如量子效率)等方面的影响。最后就如何控制Mn
4+
激活荧光粉中锰离子价态等进行了展望。
The Mn
4+
activated phosphors can emit wavelength-tunable red luminescence under blue light excitation
which is one of the hotspots in the field of red phosphor for white light-emitting diodes. There are several manganese-containing chemicals that were used as manganese source
including K
2
MnF
6
KMnO
4
Mn(HPO
4
)
2
MnCO
3
MnO
2
MnO
Mn(NO
3
)
2
and Mn(CH
3
COO)
2
. This mini-review summarized the types of these chemicals that have been chosen in literatures as the manganese source for the synthesis of Mn
4+
-doped fluoride
oxyfluoride
and oxide phosphors
via
different synthesis methods. The influences of choosing different manganese sources and synthesis methods on the photoluminescence properties(for example
the quantum efficiency) of the as-prepared phosphors were summarized. Finally
the methods for controlling the valence state of manganese ions in the as-synthesized phosphors were prospected.
荧光粉锰离子锰源
phosphormanganese ionmanganese-containing chemical
刘元红, 高慰, 陈观通, 等. 白光LED用氟化物荧光粉研究进展及发展趋势[J]. 中国照明电器, 2018(2): 20-24.
LIU Y H, GAO W, CHEN G T, et al. Research progress and development trend of fluoride phosphor for white LED[J]. China Light Light., 2018(2): 20-24. (in Chinese)
周亚运, 王玲燕, 邓婷婷, 等. Mn4+掺杂氟化物窄带发射红色荧光粉的研究进展[J]. 中国科学:技术科学, 2017, 47(11): 1111-1125.
ZHOU Y Y, WANG L Y, DENG T T, et al. Recent advances in Mn4+-doped fluoride narrow-band red-emitting phosphors[J]. Sci. Sinica Technol., 2017, 47(11): 1111-1125. (in Chinese)
BRIK M G, 马崇庚, SRIVASTAVA A M, 等. 用于固态照明的Mn4+离子光谱学[J]. 发光学报, 2020, 41(9): 1011-1029.
BRIK M G, MA C G, SRIVASTAVA A M, et al. Mn4+ ions for solid state lighting[J]. Chin. J. Lumin., 2020, 41(9): 1011-1029. (in English)
王兆武, 姬海鹏, 徐坚, 等. 白光LED用Mn4+激活红光荧光粉中锰离子价态表征研究进展[J]. 发光学报, 2020, 41(10): 1195-1213.
WANG Z W, JI H P, XU J, et al. Advances in valence state analysis of manganese in Mn4+-activated red phosphors for white LEDs[J]. Chin. J. Lumin., 2020, 41(10): 1195-1213. (in Chinese)
姬海鹏. 荧光粉中激活剂离子掺杂格位分析[J]. 发光学报, 2022, 43(1): 26-41.
JI H P. Analysis of site-occupation of activator in phosphors[J]. Chin. J. Lumin., 2022, 43(1): 26-41. (in Chinese)
SEKIGUCHI D, ADACHI S. Synthesis and photoluminescence spectroscopy of BaGeF6∶Mn4+ red phosphor[J]. Opt. Mater., 2015, 42: 417-422.
ADACHI S, TAKAHASHI T. Direct synthesis and properties of K2SiF6∶Mn4+ phosphor by wet chemical etching of Si wafer[J]. J. Appl. Phys., 2008, 104(2): 023512-1-3.
XU Y K, ADACHI S. Properties of Na2SiF6∶Mn4+ and Na2GeF6∶Mn4+ red phosphors synthesized by wet chemical etching[J]. J. Appl. Phys., 2009, 105(1): 013525-1-6.
ADACHI S, TAKAHASHI T. Photoluminescent properties of K2GeF6∶Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution[J]. J. Appl. Phys., 2009, 106(1): 013516-1-6.
ADACHI S, ABE H, KASA R, et al. Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6∶Mn4+[J]. J. Electrochem. Soc., 2011, 159(2): J34-J37.
XU Y K, ADACHI S. Properties of Mn4+-activated hexafluorotitanate phosphors[J]. J. Electrochem. Soc., 2011, 158(3): J58-J65.
JIANG X Y, PAN Y X, HUANG S M, et al. Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6∶Mn4+ for LED applications[J]. J. Mater. Chem. C, 2014, 2(13): 2301-2306.
LI Q Y, YU L, WU W P, et al. Novel BaG http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019751&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019758&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019753&type=SixF6∶Mn4+(0 ≤ x ≤1) red phosphors for warm white LEDs:hydrothermal synthesis and photoluminescence properties[J]. J. Alloys Compd., 2021, 852: 156995.
LI Y L, YU Y, ZHONG X, et al. K2SiF6∶Mn4+@K2SiF6 phosphor with remarkable negative thermal quenching and high water resistance for warm white LEDs[J]. J. Lumin., 2021, 234: 117968-1-12.
SEKIGUCHI D, NARA J I, ADACHI S. Photoluminescence and raman scattering spectroscopies of BaSiF6∶Mn4+ red phosphor[J]. J. Appl. Phys., 2013, 113(18): 183516-1-6.
HA J, NOVITSKAYA E, LAM N, et al. Synthesis of Mn4+ activated Na2SiF6 red-emitting phosphors using an ionic liquid[J]. J. Lumin., 2020, 218: 116835-1-8.
WANG Z L, LIU Y, ZHOU Y Y, et al. Red-emitting phosphors Na2XF6∶Mn4+ (X=Si,Ge,Ti) with high colour-purity for warm white-light-emitting diodes[J]. RSC Adv., 2015, 5(72): 58136-58140.
FANG M H, NGUYEN H D, LIN C C, et al. Preparation of a novel red Rb2SiF6∶Mn4+ phosphor with high thermal stability through a simple one-step approach[J]. J. Mater. Chem. C, 2015, 3(28): 7277-7280.
VERSTRAETE R, SIJBOM H F, KORTHOUT K, et al. K2MnF6 as a precursor for saturated red fluoride phosphors: the struggle for structural stability[J]. J. Mater. Chem. C, 2017, 5: 10761-10769.
ZHOU Q, ZHOU Y Y, LIU Y, et al. A new red phosphor BaGeF6∶Mn4+:hydrothermal synthesis, photo-luminescence properties, and its application in warm white LED devices[J]. J. Mater. Chem. C, 2015, 3(13): 3055-3059.
WANG Z W, JI H P, ZHANG Z T, et al. Solution growth of millimeter-scale Na2SiF6 single crystals for Mn4+-doping as red phosphor[J]. J. Am. Ceram. Soc., 2021, 104(10): 5077-5085.
PAULUSZ A G. Efficient Mn(Ⅳ) emission in fluorine coordination[J]. J. Electrochem. Soc., 1973, 120(7): 942-947.
HELMHOLZ L, RUSSO M E. Spectra of manganese(Ⅳ) hexafluoride ion (Mn http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019755&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019763&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019757&type=) in environments of Oh and http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019766&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019777&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019775&type= symmetry[J]. J. Chem. Phys., 1973, 59(10): 5455-5470.
CHODOS S L, BLACK A M, FLINT C D. Vibronic spectra and lattice dynamics of Cs2MnF6 and http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019780&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019791&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019782&type=MⅣF6∶Mnhttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019792&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019804&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019786&type=[J]. J. Chem. Phys., 1976, 65(11): 4816-4824.
SETLUR A A, RADKOV E V, HENDERSON C S, et al. Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors[J]. Chem. Mater., 2010, 22(13): 4076-4082.
SONG E H, WANG J Q, YE S, et al. Room-temperature synthesis and warm-white LED applications of Mn4+ ion doped fluoroaluminate red phosphor Na3AlF6∶Mn4+[J]. J. Mater. Chem. C, 2016, 4(13): 2480-2487.
SONG E H, ZHOU Y Y, YANG X B, et al. Highly efficient and stable narrow-band red phosphor Cs2SiF6∶Mn4+ for high-power warm white LED applications[J]. ACS Photonics, 2017, 4(10): 2556-2565.
ZHANG J F, LIU L L, HE S A, et al. Cs2MnF6 red phosphor with ultrahigh absorption efficiency[J]. Inorg. Chem., 2019, 58(22): 15207-15215.
ZHU H M, LIN C C, LUO W Q, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes[J]. Nat. Commun., 2014, 5(1): 4312-1-7.
LI H, YANG Z F, LUO L J, et al. A red-emitting phosphor Ba2HfF8∶Mn4+ with a strengthened zero phonon line of Mn4+ for displays[J]. Opt. Mater., 2020, 107: 110091-1-6.
WU J, LI Z Y, LUO L, et al. A facile two-step synthesis of an efficient narrow-band red-emitting K2NbF7∶Mn4+ phosphor for warm white LEDs and its thermal quenching behavior[J]. J. Alloys Compd., 2021, 863: 158058-1-8.
SONG E H, WANG J Q, SHI J H, et al. Highly efficient and thermally stable K3AlF6∶Mn4+ as a red phosphor for ultra-high-performance warm white light-emitting diodes[J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 8805-8812.
姬海鹏, 张宗涛, XU Jian, 等. Mn4+激活氧氟化物红光荧光粉的研究进展[J]. 无机材料学报, 2020, 35(8): 847-856.
JI H P, ZHANG Z T, XU Jian, et al. Advance in red-emitting Mn4+-activated oxyfluoride phosphors[J]. J. Inorg. Mater., 2020, 35(8): 847-856. (in Chinese)
HU T, LIN H, CHENG Y, et al. A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn4+-activated oxyfluoride Na2WO2F4[J]. J. Mater. Chem. C, 2017, 5(40): 10524-10532.
CAI P Q, QIN L, CHEN C L, et al. Luminescence, energy transfer and optical thermometry of a novel narrow red emitting phosphor:Cs2WO2F4∶Mn4+[J]. Dalton Trans., 2017, 46(41): 14331-14340.
MING H, ZHANG J F, LIU L L, et al. A novel Cs2NbOF5∶Mn4+ oxyfluoride red phosphor for light-emitting diode devices[J]. Dalton Trans., 2018, 47(45): 16048-16056.
DONG X L, PAN Y X, LI D, et al. A novel red phosphor of Mn4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications[J]. CrystEngComm, 2018, 20(37): 5641-5646.
STOLL C, HEYMANN G, SEIBALD M, et al. K3WOF7∶Mn4+—a red oxyfluoride phosphor[J]. J. Fluorine Chem., 2019, 226: 109356-1-7.
STOLL C, SEIBALD M, BAUMANN D, et al. Hf-free solid-state synthesis of the oxyfluoride phosphor K3MoOF7∶Mn4+[J]. Eur. J. Inorg. Chem., 2019, 2019(29): 3383-3388.
KATO H, TAKEDA Y, KOBAYASHI M, et al. Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn4+[J]. Front. Chem., 2018, 6: 467-1-7.
BRIK M G, SRIVASTAVA A M. A computation study of site occupancy in the commercial Mg28Ge7.55O32F15.04∶Mn4+ phosphor[J]. Opt. Mater., 2016, 54: 245-251.
MURATA T, TANOUE T, IWASAKI M, et al. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED[J]. J. Lumin., 2005, 114(3-4): 207-212.
王兆武, 姬海鹏, 王飞翔, 等. 调控Al2O3晶型控制MgAl2O4∶Mn4+荧光粉中Mn价态研究[J]. 无机材料学报, 2021, 36(5): 513-520.
WANG Z W, JI H P, WANG F X, et al. Valence state control of manganese in MgAl2O4∶Mn4+ phosphor by varying the Al2O3 crystal form[J]. J. Inorg. Mater., 2021, 36(5): 513-520. (in Chinese)
DONG L P, ZHANG L, JIA Y C, et al. Enhancing luminescence and controlling the Mn valence state of Gd3Ga5-x-δA http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019806&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019800&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019808&type=O12∶yMn phosphors by the design of the garnet structure[J]. ACS Appl. Mater. Interfaces, 2020, 12(6): 7334-7344.
HUANG C S, HUANG C L, LIU Y C, et al. Ab initio-aided sensitizer design for Mn4+-activated Mg2TiO4 as an ultrabright fluoride-free red-emitting phosphor[J]. Chem. Mater., 2018, 30(5): 1769-1775.
PENG L L, CHEN W B, CAO S X, et al.. Enhanced photoluminescence and thermal properties due to size mismatch in Mg2TixG http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019801&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019820&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019813&type=O4∶Mn4+ deep-red phosphors[J]. J. Mater. Chem. C, 2019, 7(8): 2345-2352.
HU J X, ZHAO Y, CHEN B J, et al. An investigation of Mn4+ doped BeAl2O4 single crystal for WLEDs application[J]. Ceram. Int., 2018, 44(16): 20220-20226.
JI H P, HOU X H, MOLOKEEV M S, et al. Ultrabroadband red luminescence of Mn4+ in MgAl2O4 peaking at 651 nm[J]. Dalton Trans., 2020, 49(17): 5711-5721.
MEDIĆ M M, BRIK M G, DRAŽIĆ G, et al. Deep-red emitting Mn4+ doped Mg2TiO4 nanoparticles[J]. J. Phys. Chem. C, 2015, 119(1): 724-730.
HASEGAWA T, NISHIWAKI Y, FUJISHIRO F, et al. Quantitative determination of the effective Mn4+ concentration in a Li2TiO3∶Mn4+ phosphor and its effect on the photoluminescence efficiency of deep red emission[J]. ACS Omega, 2019, 4(22): 19856-19862.
ZHANG Y L, HU S, LIU Y L, et al. Influences of thermal post-treatment on the Mn valence states and luminescence properties of red-emitting Lu3Al5O12∶Mn4+ transparent ceramic phosphors[J]. Opt. Mater., 2020, 101: 109705-1-5.
HU J Q, SONG E H, ZHOU Y Y, et al. Non-stoichiometric defect-controlled reduction toward mixed-valence Mn-doped hexaaluminates and their optical applications[J]. J. Mater. Chem. C, 2019, 7(19): 5716-5723.
HU J Q, SONG E H, YE S, et al. Anomalous spontaneous-reduction of Mn7+/Mn4+ to Mn2+ and luminescence properties in Zn2GeO4∶Mn[J]. J. Mater. Chem. C, 2017, 5(13): 3343-3351.
WEI Y, HAN X X, SONG E H, et al. Photoluminescence and phosphorescence of Mn2+ ion activated green phosphor Na2ZnSiO4∶Mn2+ synthesized by self-reduction[J]. Mater. Res. Bull., 2019, 113: 90-96.
ZHANG Y L, HU S, LIU Y L, et al. Red-emitting Lu3Al5O12∶Mn transparent ceramic phosphors:valence state evolution studies of Mn ions[J]. Ceram. Int., 2018, 44(18): 23259-23262.
WAKUI Y, SHAN Y J, TEZUKA K, et al. Crystal-site engineering approach for preparation of Mg B2O4∶Mn2+, Mn4+(B=Al, Ga) phosphors:control of green/red luminescence properties[J]. Mater. Res. Bull., 2017, 90: 51-58.
ZHANG S, WEI H W, ZHOU Y, et al. Green synthesis of K2TiF6∶Mn4+ using KHF2 as accessory ingredient:a novel airtight solid-state strategy[J]. Opt. Mater., 2018, 86: 165-171.
GARCIA-SANTAMARIA F, MURPHY J E, SETLUR A A, et al. Concentration quenching in K2SiF6∶Mn4+ phosphors[J]. ECS J. Solid State Sci. Technol., 2018, 7(1): R3030-R3033.
周亚运, 明红, 赵逸飞, 等. 高效高稳定Rb2SiF6∶Mn4+红光单晶[J]. 发光学报, 2021, 42(10): 1559-1568.
ZHOU Y Y, MING H, ZHAO Y F, et al. Preparation and luminescent properties of Rb2SiF6∶Mn4+ single crystal for laser lighting[J]. Chin. J. Lumin., 2021, 42(10): 1559-1568. (in Chinese)
司帅晨, 黄霖, 王静. K2SiF6∶Mn4+荧光玻璃陶瓷及其在激光照明中的应用[J]. 发光学报, 2021, 42(10): 1549-1558.
SI S C, HUANG L, WANG J. K2SiF6∶Mn4+ luminescent glass ceramics applicable to laser lighting[J]. Chin. J. Lumin., 2021, 42(10): 1549-1558. (in Chinese)
HUANG L, LIU Y, SI S C, et al. A new reductive dl-mandelic acid loading approach for moisture-stable Mn4+ doped fluorides[J]. Chem. Commun., 2018, 54(84): 11857-11860.
HUANG L, LIU Y, YU J B, et al. Highly stable K2SiF6∶Mn4+@K2SiF6 composite phosphor with narrow red emission for white LEDs[J]. ACS Appl. Mater. Interfaces, 2018, 10(21): 18082-18092.
QU Q, WANG Z W, JI H P. Towards improved waterproofness of Mn4+-activated fluoride phosphors[J]. Mater. Adv., 2022, 3: 3089-3100.
0
Views
519
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution