浏览全部资源
扫码关注微信
吉林大学 电子科学与工程学院,集成光电子学国家重点联合实验室,吉林 长春 130012
Published:01 April 2022,
Received:18 December 2021,
Revised:09 January 2022,
移动端阅览
ZHENG-DA LI, TENG JIAO, XIN DONG, et al. Preparation of n-type β-Ga2O3 Film with High Thickness by MOCVD. [J]. Chinese journal of luminescence, 2022, 43(4): 545-551.
ZHENG-DA LI, TENG JIAO, XIN DONG, et al. Preparation of n-type β-Ga2O3 Film with High Thickness by MOCVD. [J]. Chinese journal of luminescence, 2022, 43(4): 545-551. DOI: 10.37188/CJL.20210398.
高厚度的Ga
2
O
3
薄膜能够提高器件的击穿电压,这种高厚度Ga
2
O
3
薄膜往往是通过HVPE法制备的。然而HVPE法存在着成本高、设备少等缺点。本文通过金属有机化学气相沉积(MOCVD)工艺,以SiH
4
为n型掺杂源,在Ga
2
O
3
衬底上生长了高厚度的n型β-Ga
2
O
3
薄膜,并且研究了SiH
4
流量对β-Ga
2
O
3
性质的影响。实验中制备的β-Ga
2
O
3
薄膜厚度达到4.15 μm。薄膜的晶体质量高,表面致密光滑且呈现台阶流生长模式。随着SiH
4
流量增加,晶体质量逐渐降低,电子浓度显著增加,电子迁移率降低。目前,高厚度β-Ga
2
O
3
薄膜的电子浓度可以在3.6×10
16
~ 5.3×10
18
cm
-3
范围内调控;当薄膜电子浓度为3.6×10
16
cm
-3
时,其电子迁移率可达137 cm
2
·V
-1
·s
-1
。本文论证了MOCVD工艺进行高厚度n型β-Ga
2
O
3
薄膜生长的可行性,这也为β-Ga
2
O
3
基垂直结构功率器件的制备提供了一种新途径。
High-thickness Ga
2
O
3
film could increase the breakdown voltage of the device and it was generally prepared by HVPE. However
this method has some disadvantages such as the high cost and shortage of machines. In this paper
n-type β-Ga
2
O
3
film with high thickness was prepared by metal-organic chemical vapor deposition(MOCVD) process on the Ga
2
O
3
substrate with SiH
4
as the n-type doping source and the influence of SiH
4
flow on the properties of β-Ga
2
O
3
was studied. The thickness of the β-Ga
2
O
3
film prepared in the experiment reaches 4.15 μm. The crystal quality is high
and the surface of the film is dense and smooth and presents a step flow growth mode. As the flow of SiH
4
increases
both the crystal quality and the electron mobility gradually decreases
while the electron concentration increases significantly. At present
the electron concentration of the high-thickness β-Ga
2
O
3
film can be adjusted within the range of 3.6×10
16
- 5.3×10
18
cm
-3
; when the film electron concentration is 3.6×10
16
cm
-3
the electron mobility can reach 137 cm
2
·V
-1
·s
-1
. This article demonstrates the feasibility of growing high-thickness n-type β-Ga
2
O
3
films by MOCVD process
which also provides a new way for the preparation of β-Ga
2
O
3
-based vertical structure power devices.
氧化镓金属有机化学气相沉积(MOCVD)高厚度薄膜
gallium oxidemetal-organic chemical vapor deposition(MOCVD)high-thickness film
BLEVINS J, YANG G. On optical properties and scintillation performance of emerging Ga2O3: crystal growth,emission mechanisms and doping strategies [J]. J. Mater. Res. Bull., 2021, 144:111494.
JUBU P R, YAM F K, KYESMEN P I. Structural,optical and electrochemical transient photoresponse properties of ZnO/Ga2O3 nanocomposites prepared by two-step CVD method [J]. Int. J. Hyd. Energy, 2021, 46(66):33087-33097.
YAKIMOV E B, POLYAKOV A Y, SHCHEMEROV I V, et al. On the nature of photosensitivity gain in Ga2O3 Schottky diode detectors:effects of hole trapping by deep acceptors [J]. J. Alloys Compd., 2021, 879:160394.
HU H D, LIU Y C, HAN G Q, et al. Effects of post annealing on electrical performance of polycrystalline Ga2O3 photodetector on sapphire [J]. Nanoscale Res. Lett., 2020, 15(1):100-1-8.
郭道友, 李培刚, 陈政委, 等. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展 [J]. 物理学报, 2019, 68(7):078501-1-36.
GUO D Y, LI P G, CHEN Z W, et al. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector [J]. Acta Phys. Sinica, 2019, 68(7):078501-1-36. (in Chinese)
ZHANG K, XU Z W, ZHAO J L, et al. Temperature-dependent Raman and photoluminescence of β-Ga2O3 doped with shallow donors and deep acceptors impurities [J]. J. Alloys Compd., 2021, 881:160665.
ZHU N X, XUE X Y, SU J. Microstructures and electronic characters of β-Ga2O3 on different substrates:exploring the role of surface chemistry and structures [J]. Phys. Chem. Chem. Phys., 2021, 23(38):21874-21882.
VENKATA KRISHNA RAO R, RANADE A K, DESAI P, et al. Temperature-dependent device properties of γ-CuI and β-Ga2O3 heterojunctions [J]. SN Appl. Sci., 2021, 3(10):796-1-9.
SERYOGIN G, ALEMA F, VALENTE N, et al. MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor [J]. Appl. Phys. Lett., 2020, 117(26):262101-1-6.
WANG Y H, LI H R, CAO J, et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction [J]. ACS Nano, 2021, 15(10):16654-16663.
ZHANG T, LI Y F, CHENG Q, et al. Research on the crystal phase and orientation of Ga2O3 hetero-epitaxial film [J]. Superlattices Microstruct., 2021, 159:107053.
李如永. 射频磁控溅射法制备Mg掺杂Ga2O3薄膜的研究 [D]. 北京:北京工业大学, 2019.
LI R Y. Study on Mg Doped Ga2O3 Thin Films Preparared by RF Magnetron Sputtering [D]. Beijing:Beijing University of Technology, 2019. (in Chinese)
MENG Y J, GAO Y Q, CHEN K Y, et al. Annealing induced phase transition and optical properties of Ga2O3 thin films synthesized by sputtering technique [J]. Optik, 2021, 244:167515.
张晓霞, 邓金祥, 孔乐, 等. 不同浓度的Si掺杂β-Ga2O3薄膜的制备及研究 [J]. 真空, 2021, 58(5):57-61.
ZHANG X X, DENG J X, KONG L, et al. Preparation and study of Si-doped β-Ga2O3 thin films with different content [J]. Vacuum, 2021, 58(5):57-61. (in Chinese)
XU W L, SHI J C, LI Y W, et al. Study of β-Ga2O3 films hetero-epitaxially grown on off-angled sapphire substrates by halide vapor phase epitaxy [J]. Mater. Lett., 2021, 289:129411-1-4.
TAYLOR N R, JI M, PAN L, et al. Large area vertical Ga2O3 Schottky diodes for X-ray detection [J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2021, 1013:165664.
YAO Y, OKUR S, LYLE L A M, et al. Growth and characterization of α-,β-,and ε-phases of Ga2O3 using MOCVD and HVPE techniques [J]. Mater. Res. Lett., 2018, 6(5):268-275.
SHAPENKOV S, VYVENKO O, NIKOLAEV V, et al. Polymorphism and faceting in Ga2O3 layers grown by HVPE at various gallium-to-oxygen ratios [J]. Phys. Status Solidi B, 2021, 259:2100331.
JIAO T, LI Z M, LI W C, et al. Stable low electron concentration β-Ga2O3 films grown by metal-organic chemical vapor deposition [J]. ECS J. Solid State Sci. Technol., 2020, 9(5):055013-1-5.
焦腾, 李赜明, 王谦, 等. Ga2O3/GaN/蓝宝石模板上β-Ga2O3薄膜的生长 [J]. 发光学报, 2020, 41(3):281-287.
JIAO T, LI Z M, WANG Q, et al. Growth of β-Ga2O3 thin films on Ga2O3/GaN/sapphire template [J]. Chin. J. Lumin., 2020, 41(3):281-287. (in Chinese)
LIU Z, ZHI Y S, LI S, et al. Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to β-Ga2O3 thin film [J]. J. Phys. D Appl. Phys., 2020, 53(8):085105-1-8.
ZHI Y S, JIANG W Y, LIU Z, et al. High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film [J]. Chin. Phys. B, 2021, 30(5):057301-1-8.
XING Y H, ZHANG Y, HAN J, et al. Research of nanopore structure of Ga2O3 film in MOCVD for improving the performance of UV photoresponse [J]. Nanotechnology, 2021, 32(9):095301-1-8.
ALEMA F, SERYOGIN G, OSINSKY A, et al. Ge doping of β-Ga2O3 by MOCVD [J]. APL Mater., 2021, 9(9):091102-1-11.
马征征, 董鑫, 庄仕伟, 等. 退火对Ga2O3薄膜特性的影响 [J]. 发光学报, 2017, 38(5):606-610.
MA Z Z, DONG X, ZHUANG S W, et al. Effect of annealing on Ga2O3 film [J]. Chin. J. Lumin., 2017, 38(5):606-610. (in Chinese)
NIKOLAEV V I, PECHNIKOV A I, NIKOLAEV V V, et al. HVPE growth of α- and ε-Ga2O3 on patterned sapphire substrates [J]. J. Phys. Conf. Ser., 2019, 1400(5):055049-1-7.
MAHADIK N A, TADJER M J, BONANNO P L, et al. High-resolution dislocation imaging and micro-structural analysis of HVPE-βGa2O3 films using monochromatic synchrotron topography [J]. APL Mater., 2019, 7(2):022513-1-6.
HERNANDEZ A, ISLAM M, SADDATKIA P, et al. MOCVD growth and characterization of conductive homoepitaxial Si-doped Ga2O3 [J]. Results Phys., 2021, 25:104167-1-8.
KONG L Y, MA J, LUAN C N, et al. Structural and optical properties of Ga2O3:in films deposited on MgO (1 0 0) substrates by MOCVD [J]. J. Solid State Chem., 2011, 184(8):1946-1950.
代波. β-Ga2O3薄膜制备与表征 [D]. 西安:西安电子科技大学, 2015.
DAI B. Preparation and Characterization of β-Ga2O3 Thin Films [D]. Xi’an:Xidian University, 2015. (in Chinese)
HE Q M, MU W X, FU B, et al. Schottky barrier rectifier based on (100) β-Ga2O3 and its DC and AC characteristics [J]. IEEE Electron Device Lett., 2018, 39(4):556-559.
0
Views
141
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution