浏览全部资源
扫码关注微信
1.宁波大学 信息科学与工程学院,浙江 宁波 315211
2.南京大学 固体微结构国家重点实验室,江苏 南京 210093
Published:2022-03,
Received:09 December 2021,
Revised:19 December 2021,
扫 描 看 全 文
Xiu-dong CAO, Hui-hong ZHANG, Ye TIAN, et al. Preparation and Performance of Luminescent Solar Concentrator Based on Surface Plasmon Resonance Effect. [J]. Chinese Journal of Luminescence 43(3):396-403(2022)
Xiu-dong CAO, Hui-hong ZHANG, Ye TIAN, et al. Preparation and Performance of Luminescent Solar Concentrator Based on Surface Plasmon Resonance Effect. [J]. Chinese Journal of Luminescence 43(3):396-403(2022) DOI: 10.37188/CJL.20210387.
金属纳米颗粒的表面等离子体共振效应能够对特定波长入射光的吸收或者散射增强,正因为其独特的光学性质,金属纳米颗粒被尝试应用于荧光太阳集光器。本文利用全无机钙钛矿CsPbBr
3
量子点、Au纳米颗粒和硫醇-烯聚合物制备荧光太阳集光器。研究发现,掺杂适量Au纳米颗粒可以通过表面等离子体共振效应提高全无机钙钛矿CsPbBr
3
量子点荧光太阳集光器的外量子效率。当Au纳米颗粒的掺杂浓度为2.0×10
-6
时,荧光太阳集光器的外量子效率为12.3%,相比未掺杂Au纳米颗粒的荧光太阳集光器的外量子效率提升了78.2%。进一步提高Au纳米颗粒的掺杂浓度,荧光太阳集光器的外量子效率下降。荧光发射谱和荧光寿命谱测试结果显示,当Au纳米颗粒的掺杂浓度超过2.0×10
-6
时,过高的Au纳米颗粒掺杂浓度导致CsPbBr
3
量子点与Au纳米颗粒之间发生非辐射能量转移,荧光太阳集光器荧光量子产率(
η
PL
LSC
)下降导致了外量子效率下降。
The surface plasmon resonance effect of metal nanoparticles can enhance the absorption and scattering of incident light at a certain wavelength. Because of this unique optical property
the metal nanoparticles are developed for the applications of luminescent solar concentrators. In this paper
the Au nanoparticles with different concentrations are introduced to the luminescent solar concentrators based on the all-inorganic perovskite CsPbBr
3
quantum dots and the thiol-ene polymer. The results show that the Au nanoparticles with suitable concentration can improve the external quantum efficiency of the luminescent solar concentrators by the surface plasmon resonance effect. When the doping concentration of Au nanoparticles is 2.0×10
-6
the external quantum efficiency of the luminescent solar concentrator is 12.3%
which is enhanced by 78.2% compared with that of Au-free luminescent solar concentrator. With the further increase of Au nanoparticle doping concentration above 2.0×10
-6
the external quantum efficiency of the luminescent solar concentrators decreases. According to the photoluminescence emission spectra and the time-resolved photoluminescence emission curves
excessive Au nanoparticle doping concentration leads to the non-radiative energy transfer process between the CsPbBr
3
quantum dots and Au nanoparticles. The decreasing fluorescence quantum yield(
η
PL
LSC
) gives rises to decreasing external quantum efficiency of the luminescent solar concentrator.
钙钛矿量子点Au纳米颗粒表面等离子体共振效应外量子效率非辐射能量转移
perovskite quantum dotAu nanoparticlesurface plasmon resonance effectexternal quantum efficiencynon-radiative energy transfer
GREEN M A. Third generation photovoltaics: ultra-high conversion efficiency at low cost [J]. Prog. Photovoltaics, 2001, 9(2):123-135.
EJAZ A, BABAR H, ALI H M, et al. Concentrated photovoltaics as light harvesters:outlook,recent progress,and challenges [J]. Sustain. Energy Technol. Assess., 2021, 46:101199.
WEBER W H, LAMBE J. Luminescent greenhouse collector for solar radiation [J]. Appl. Opt., 1976, 15(10):2299-2300.
EL-SHAHAWY M A. Polymethyl methacrylate mixtures with some organic laser dyes:I. Dielectric response [J]. Polym. Test., 1999, 18(5):389-396.
CURRIE M J, MAPEL J K, HEIDEL T D, et al. High-efficiency organic solar concentrators for photovoltaics [J]. Science, 2008, 321(5886):226-228.
AOUAINI F, MAAOUI A, MOHAMED N B H, et al. Visible to infrared down conversion of Er3+ doped tellurite glass for luminescent solar converters [J]. J. Alloys Compd., 2022, 894:162506.
LIU C, DENG R J, GONG Y L, et al. Luminescent solar concentrators fabricated by dispersing rare earth particles in PMMA waveguide [J]. Int. J. Photoenergy, 2014, 2014:290952-1-5.
BOMM J, BÜCHTEMANN A, CHATTEN A J, et al. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators [J]. Sol. Energy Mater. Sol. Cells, 2011, 95(8):2087-2094.
BERGREN M R, MAKAROV N S, RAMASAMY K, et al. High-performance CuInS2 quantum dot laminated glass luminescent solar concentrators for windows [J]. ACS Energy Lett., 2018, 3(3):520-525.
YOU Y M, TONG X, WANG W H, et al. Eco-friendly colloidal quantum dot-based luminescent solar concentrators [J]. Adv. Sci., 2019, 6(9):1801967-1-24.
ZHAO H G, BENETTI D, JIN L, et al. Absorption enhancement in “Giant” core/alloyed-shell quantum dots for luminescent solar concentrator [J]. Small, 2016, 12(38):5354-5365.
ZHAO H G, ZHOU Y F, BENETTI D, et al. Perovskite quantum dots integrated in large-area luminescent solar concentrators [J]. Nano Energy, 2017, 37:214-223.
HU Y J, SHU J P, ZHANG X W, et al. Encapsulation of colloid perovskite nanocrystals into solid polymer matrices:impact on electronic transition and photoluminescence [J]. J. Lumin., 2020, 219:116938-1-8.
ZHAO H G, SUN R J, WANG Z F, et al. Zero-dimensional perovskite nanocrystals for efficient luminescent solar concentrators [J]. Adv. Funct. Mater., 2019, 29(30):1902262-1-8.
SETHI A, CHANDRA S, AHMED H, et al. Broadband plasmonic coupling and enhanced power conversion efficiency in luminescent solar concentrator [J]. Sol. Energy Mater. Sol. Cells, 2019, 203:110150-1-6.
CHANDRA S, DORAN J, MCCORMACK S J, et al. Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction [J]. Sol. Energy Mater. Sol. Cells, 2012, 98:385-390.
MORITA H, KAWAI H, TAKEHARA K, et al. Emission enhancement of water-soluble porphyrin immobilized in DNA ultrathin films by localized surface plasmon resonance of gold nanoparticles [J]. IEICE Trans. Electron., 2019, E102.C(2):100-106.
LIU X, BENETTI D, ROSEI F. Semi-transparent luminescent solar concentrators based on plasmon-enhanced carbon dots [J]. J. Mater. Chem. A, 2021, 9(41):23345-23352.
MENDEWALA B, VICKERS E T, NIKOLAIDOU K, et al. High efficiency luminescent solar concentrator based on organo-metal halide perovskite quantum dots with plasmon enhancement [J]. Adv. Opt. Mater., 2021, 9(20):2100754.
YANG X H, FU H T, WONG K, et al. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance [J]. Nanotechnology, 2013, 24(41):415601-1-10.
MA R M, OULTON R F, SORGER V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection [J]. Nat. Mater., 2011, 10(2):110-113.
LOO C, LIN A, HIRSCH L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer [J]. Technol. Cancer Res. Treat., 2004, 3(1):33-40.
OULTON R F, SORGER V J, GENOV D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J]. Nat. Photonics, 2008, 2(8):496-500.
WU J L, CHEN F C, HSIAO Y S, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells [J]. ACS Nano, 2011, 5(2):959-967.
CHO A. High-tech materials could render objects invisible [J]. Science, 2006, 312(5777):1120.
PRASAD P N. Polymer science and technology for new generation photonics and biophotonics [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8(1):11-19.
MAGGIONI G, CAMPAGNARO A, CARTURAN S, et al. Dye-doped parylene-based thin film materials:application to luminescent solar concentrators [J]. Sol. Energy Mater. Sol. Cells, 2013, 108:27-37.
顾港伟, 郑子达, 张鑫, 等. 基于CsPbBr3纳米晶掺杂硫醇-烯聚合物的荧光太阳集光器制备及集光性能 [J]. 发光学报, 2021, 42(5):724-732.
GU G W, ZHENG Z D, ZHANG X, et al. Fabrication and optical efficiency of CsPbBr3 nanocrystals and thiol-ene polymer-based luminescent solar concentrator [J]. Chin. J. Lumin., 2021, 42(5):724-732. (in Chinese)
GU G W, ZHANG X, GUO Y Q, et al. Optical characterization and photo-electrical measurement of luminescent solar concentrators based on perovskite quantum dots integrated into the thiol-ene polymer [J]. Appl. Phys. Lett., 2021, 119(1):011905.
LI H B, WU K F, LIM J, et al. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators [J]. Nat. Energy, 2016, 1(12):16157-1-9.
KLIMOV V I, BAKER T A, LIM J, et al. Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots [J]. ACS Photonics, 2016, 3(6):1138-1148.
GEDDES C D, LAKOWICZ J R. Editorial:Metal-enhanced fluorescence [J]. J. Fluoresc., 2002, 12(2):121-129.
0
Views
200
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution